Presentations

    Making light go infinitely fast, at RCC Workshop on Nanomaterials, Real Colegio Complutense at Harvard University (Cambridge, MA), Friday, May 1, 2015:
    Impedance-matched metamaterials with zero refractive index can be achieved by exploiting a Dirac cone at the center of the Brillouin zone. We present an in-plane Dirac-cone metamaterial consisting of low-aspect-ratio silicon pillar arrays in an SU-8 matrix with top and bottom gold layers. Using an integrated nano-scale prism constructed of the proposed material, we demonstrate unambiguously a zero refractive index in the optical regime. This design serves as a novel on-chip platform in the optical regime to explore the exotic physics of Dirac-cone metamaterials and to implement applications... Read more about Making light go infinitely fast
    2D impedance-matched zero-index metamaterial, at SPIE Photonics West: Photonic and Phononic Properties of Engineered Nanostructures IV (San Francisco, California), Wednesday, February 5, 2014
    Recent efforts to achieve metamaterials with a vanishing refractive index take advantage of the low index at a photonic band edge. This behavior is accompanied by a divergent impedance, resulting in inefficient transmission. We investigate the nature of this discontinuity and show that it can be removed by tuning the electric and magnetic response of the metamaterial. We present a design for a 2D zero-index metamaterial based on this concept. The metamaterial is entirely dielectric, which results in low-loss transmission at the design wavelength of 1.55um. This behavior is confirmed using... Read more about 2D impedance-matched zero-index metamaterial
    Dirac-cone based negative/zero/positive refractive index metamaterials, at SPIE Photonics West: Photonic and Phononic Properties of Engineered Nanostructures IV (San Francisco, California), Thursday, February 6, 2014
    Based on accidental degeneracy, a Dirac-cone can be formed at the center of the Brillouin zone of a photonic crystal, which can be treated as a homogeneous bulk metamaterial in the vicinity of Dirac-point. In the vicinity below (above) the Dirac-point, the backward-wave (forward-wave) implies negative (positive) n_eff; at Dirac-point, k=0 induces zero n_eff. This negative/zero/positive refractive index shows low-loss and good impedance matching to free-space. According to this principle, we designed a Dirac-cone based metamaterial consisting of 2D square array of silicon pillars operating... Read more about Dirac-cone based negative/zero/positive refractive index metamaterials
    Less is More: Extreme Optics with Zero Refractive Index, at Physics Colloquium, Brown Univeristy (Providence, RI), Monday, September 28, 2015:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at United States Coast Guard Academy (New London, Connecticut), Monday, October 26, 2015:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Nonlinear optics in on-chip zero-index metamaterials, at Engineering Physics seminar, Universite de Montreal (Montreal, QC, Canada), Monday, November 23, 2015:
    Optical metamaterials - composite materials whose electromagnetic properties are finely engineered by designing their constituents - have been shown to exhibit strange and exotic properties, such as negligible or negative indices of refraction and the direct control of the amplitude and phase of light. These properties have been used for innumerable applications, such as flat lenses, invisibility cloaks as well as previously unseen nonlinear interactions. Recently, our group has demonstrated the first on-chip metamaterial with a refractive index of zero. These isotropic structures exhibit a... Read more about Nonlinear optics in on-chip zero-index metamaterials
    Less is More: Extreme Optics with Zero Refractive Index, at Wednesday Night Research Seminar, Harvard University (Cambridge, MA), Wednesday, December 2, 2015:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Nonlinear Phase-Matching in 2D Integrated Zero-Index Metamaterials, at MRS: Optical Metamaterials - From New Plasmonic Materials to Metasurface Devices (Boston, MA), Wednesday, December 2, 2015:
    Nonlinear optics play an important role in many applications in photonics and quantum optics, such as in frequency conversion, sensing, and entangled-photon generation. The strong field confinement obtained by the transition to an integrated platform has led to unprecedented nonlinear figures of merit and the miniaturization of nonlinear devices. However, phase-matching remains an essential component to nonlinear processes and represents a significant obstacle, with many different free-space and on-chip techniques being developed to circumvent its constraints. Recently, a 1-dimensional... Read more about Nonlinear Phase-Matching in 2D Integrated Zero-Index Metamaterials
    Zero-index waveguides for metasurface applications, at 2015 MRS Fall Meeting (Boston, Massachusetts), Wednesday, December 2, 2015:
    Metamaterials with a refractive index of zero have emerged as a new tool for phase control in nanophotonics. Waves propagate within such metamaterials with infinite phase velocity, resulting in uniform phase throughout. Recently two-dimensional zero-index metamaterials have been integrated with on-chip silicon photonics, allowing for phase-free propagation over large areas. However, zero-index modes are inherently lossy: since the momentum of the wave is zero, it lies above the light line, and therefore couples to waves in free space. In particular, momentum conservation implies that the... Read more about Zero-index waveguides for metasurface applications
    On-chip zero-index metamaterialse, at Peking University (Beijing, China), Friday, December 18, 2015:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about On-chip zero-index metamaterialse
    Less is More: Extreme Optics with Zero Refractive Index, at Sichuan University (Chengdu, China), Saturday, December 19, 2015:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Sichuan University (Chengdu, China), Monday, December 21, 2015:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Faculty of Physics Pontificia Universidad Católica de Chile (Santiago, Chile), Tuesday, January 12, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Applied Physics Colloquium, Harvard University (Cambridge, MA), Friday, February 12, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Photonics West 2016, Integrated Optics: Devices, Materials, and Technologies XX (San Francisco, CA), Monday, February 15, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Physics Colloquium, UMass Lowell (Lowell, MA), Wednesday, February 24, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Robert Resnick Lecture, Rensselaer Polytechnic Institute (Troy, NY), Wednesday, March 2, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support propagating light waves that have infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Seminar on Modern Optics and Spectroscopy, Massachusetts Institute of Technology (Cambridge, MA), Tuesday, March 22, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Physics Colloquium, Washington State University (Pullman, WA), Thursday, March 24, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support propagating light waves that have infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using... Read more about Less is More: Extreme Optics with Zero Refractive Index

Pages