Presentations

    Less is More: Extreme Optics with Zero Refractive Index, at CityU OSA Chapter and Department of Physics and Materials Science Lecture, City University of Hong Kong (Hong Kong, China), Monday, March 27, 2017
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Nanjing University of Science and Technology (Nanjing, China), Monday, June 5, 2017
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: A New Class of Optics with Zero Refractive Index for the Applications in Nanophotonics, Nonlinear Optics, and Quanum Entanglement, at William Mong Distinguished lecture (Hong Kong, China), Friday, March 24, 2017:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: A New Class of Optics with Zero Refractive Index for the Applications in Nanophotonics, Nonlinear Optics, and Quanum Entanglement
    Less is More: Extreme Optics with Zero Refractive Index, at Sichuan University (Chengdu, China), Monday, December 21, 2015:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at National University of Singapore (Singapore), Wednesday, August 24, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Physics Colloquium, Washington State University (Pullman, WA), Thursday, March 24, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support propagating light waves that have infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Faculty of Physics Pontificia Universidad Católica de Chile (Santiago, Chile), Tuesday, January 12, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
    On-chip zero-index metamaterialse, at Peking University (Beijing, China), Friday, December 18, 2015:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about On-chip zero-index metamaterialse
    Less is More: Extreme Optics with Zero Refractive Index, at Trinity College (Dublin, Ireland), Thursday, April 7, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support propagating light waves that have infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Less is More: Extreme Optics with Zero Refractive Index, at Robert Resnick Lecture, Rensselaer Polytechnic Institute (Troy, NY), Wednesday, March 2, 2016:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support propagating light waves that have infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using... Read more about Less is More: Extreme Optics with Zero Refractive Index
    Making light go infinitely fast, at RCC Workshop on Nanomaterials, Real Colegio Complutense at Harvard University (Cambridge, MA), Friday, May 1, 2015:
    Impedance-matched metamaterials with zero refractive index can be achieved by exploiting a Dirac cone at the center of the Brillouin zone. We present an in-plane Dirac-cone metamaterial consisting of low-aspect-ratio silicon pillar arrays in an SU-8 matrix with top and bottom gold layers. Using an integrated nano-scale prism constructed of the proposed material, we demonstrate unambiguously a zero refractive index in the optical regime. This design serves as a novel on-chip platform in the optical regime to explore the exotic physics of Dirac-cone metamaterials and to implement applications... Read more about Making light go infinitely fast
    Less is More: Extreme Optics with Zero Refractive Index, at OSA Chapter Lecture, Universidad de los Andes (Bogotá, Colombia), Thursday, May 4, 2017:
    Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index