Presentations

    The Interactive Learning Toolkit: supporting interactive classrooms, at 128th National AAPT meeting (Miami, FL), Monday, January 26, 2004:
    Research-based interactive learning techniques have dramatically improved student understanding. We have created the 'Interactive Learning Toolkit' (ILT), a web-based learning management system, to help implement two such pedagogies: Just in Time Teaching and Peer Instruction. Our main goal in developing this toolkit is to save the instructor time and effort and to use technology to facilitate the interaction between the students and the instructor (and between students themselves). After a brief review of both pedagogies, we will demonstrate the many exciting new features of the ILT. We will... Read more about The Interactive Learning Toolkit: supporting interactive classrooms
    The interactive learning toolkit: technology and the classroom, at Canadian Association of Physicists Congress, Laval University (Quebec, Canada), Tuesday, June 10, 2008:
    It has been suggested the lack of interaction in large lecture courses is to blame for the many problems facing these courses: declining enrollments, low attendance, poor evaluations, and disappointing retention. We offer a way of redesigning the classroom so interaction is introduced in many aspects of the course. This approach has shown to be effective by many instructors in a broad variety of environments. I will demonstrate some of the tools we have developed to foster this interaction.
    Femtosecond surface photochemistry: what is the role of the substraste electrons?, at Femtochemistry: The Lausanne Conference (Lausanne, Switzerland), Thursday, September 7, 1995
    We studied the femtosecond laser-induced desorption of O2 and production of CO2 from a CO/O2/Pt(111) surface at 90K. The reaction pathway with 0.3-ps laser pulses is very different from that with nanosecond or continuous wave irradiation.[1,2] Our experiments address both the excitation excitation mechanism and the chemical pathway leading to O2 desorption and CO2 production using femtosecond laser pulses. When the fluence is below 10 µJ/mm2 the yields of O2 and CO2 vary linearly with laser fluence. Above 10 µJ/mm2 the yield is highly nonlinear in the fluence. The transition indicates a... Read more about Femtosecond surface photochemistry: what is the role of the substraste electrons?
    Femtosecond surface photochemistry: what is the role of the substraste electrons?, at Femtochemistry: The Lausanne Conference (Lausanne, Switzerland), Thursday, September 7, 1995
    We studied the femtosecond laser-induced desorption of O2 and production of CO2 from a CO/O2/Pt(111) surface at 90K. The reaction pathway with 0.3-ps laser pulses is very different from that with nanosecond or continuous wave irradiation.[1,2] Our experiments address both the excitation excitation mechanism and the chemical pathway leading to O2 desorption and CO2 production using femtosecond laser pulses. When the fluence is below 10 µJ/mm2 the yields of O2 and CO2 vary linearly with laser fluence. Above 10 µJ/mm2 the yield is highly nonlinear in the fluence. The transition indicates a... Read more about Femtosecond surface photochemistry: what is the role of the substraste electrons?
    MilliHertz Surface Spectroscopy, at Ninth International Conference on Laser Spectroscopy (Bretton Woods, NH), Thursday, June 1, 1989
    A technique that has been repeatedly employed in high resolution light scattering experiments is that of light beating, or heterodyne, spectroscopy. By detecting the beating signal between the scattered light and a 'local oscillator' derived from the same laser source, one can obtain ultrahigh spectral resolution, independent of the random fluctuations of the light source. We reported earlier of a novel Fourier transform heterodyne spectroscopy (FTHS) technique with high resolution which is simpler and more direct than the conventional heterodyne technique; we have since improved our... Read more about MilliHertz Surface Spectroscopy
    Wrapping light around a hair, at IInd Mexican Meeting on Mathematical and Experimental Physics, Colegio Nacional (Mexico City, Mexico), Friday, September 10, 2004:
    Can light be guided by a fiber whose diameter is much smaller than the wavelength of the light? Can we mold the flow of light on the micrometer scale so it wraps, say, round a hair? Until recently the answer to these questions was ’no’. We developed a technique for drawing long, free-standing silica wires with diameters down to 50 nm that have a surface smoothness at the atomic level and a very uniform diameter. Light can be launched into these silica nanowires by optical evanescent coupling and the wires allow low-loss single-mode operation. They can be bent sharply, making it possible to... Read more about Wrapping light around a hair
    Subwavelength-diameter silica wires for microscale optical components, at SPIE Photonics West 2005 Conference (San Jose, CA), Monday, January 24, 2005:
    Optical components built from structures that are tens of micrometers wide are playing a key role in current optical communication networks, optical sensors, and medical optical devices. The demand for improved performance, broader applications, and higher integration density, together with rapid advances in nanotechnology for electronics and optoelectronics, has spurred an effort to reduce the size of basic optical components. However, the miniaturization of optical components with subwavelength and nanometer-sized optical guiding structures through established fabrication methods is... Read more about Subwavelength-diameter silica wires for microscale optical components
    Nanowiring light, at Optical Fiber Communication Conference 2005 (Anaheim, CA), Thursday, March 10, 2005:
    Recent advances in the fabrication and manipulation of sub-wavelength optical fibers provide new methods for building chemical and biological sensors, generating supercontinuum light by nonlinear pulse propagation, and constructing microphotonic components and devices.
    Subwavelength-diameter silica wires for microscale optical components, at SPIE Europe International Symposium: Microtechnologies for the New Millennium (Sevilla, Spain), Tuesday, May 10, 2005:
    Optical components built from structures that are tens of micrometers wide are playing a key role in current optical communication networks, optical sensors, and medical optical devices. The demand for improved performance, broader applications, and higher integration density, together with rapid advances in nanotechnology for electronics and optoelectronics, has spurred an effort to reduce the size of basic optical components. However, the miniaturization of optical components with subwavelength and nanometer-sized optical guiding structures through established fabrication methods is... Read more about Subwavelength-diameter silica wires for microscale optical components
    Nonlinear optics at the nanoscale, at OSA Frontiers in Optics Meeting (Tucson, AZ), Wednesday, October 19, 2005:
    Silica nanowires allow the guiding and manipulation of light at the nanoscale. The linear optical properties of these wires can be easily modeled because they are a step-index, all-core cylindrical waveguides. The nonlinear optical properties wires open the door to novel applications in nanoscale photonics.

Pages