Presentations

    Silica nanowires: manipulating light at the nanoscale, at Photonics West 2006 (San Jose, CA), Thursday, January 26, 2006:
    Can light be guided by a fiber whose diameter is much smaller than the wavelength of the light? Can we mold the flow of light on the micrometer scale so it wraps, say, around a hair? Until recently the answer to these questions was ‘no’. We developed a technique for drawing long, free-standing silica wires with diameters down to 50 nm that have a surface smoothness at the atomic level and a high uniformity of diameter. Light can be launched into these silica nanowires by optical evanescent coupling and the wires allow low-loss single-mode operation. They can be bent sharply, making it... Read more about Silica nanowires: manipulating light at the nanoscale
    Wrapping light around a hair, at Advances on Nanophotonics II, Centro Ettore Majorana (Erice, Italy), Tuesday, June 26, 2007:
    Can light be guided by a fiber whose diameter is much smaller than the wavelength of the light? Can we mold the flow of light on the micrometer scale so it wraps, say, around a hair? Until recently the answer to these questions was ‘no’. We developed a technique for drawing long, free-standing silica wires with diameters down to 50 nm that have a surface smoothness at the atomic level and a high uniformity of diameter. Light can be launched into these silica nanowires by optical evanescent coupling and the wires allow low-loss single-mode operation. They can be bent sharply, making it... Read more about Wrapping light around a hair
    Wrapping light around a hair, at NCLT Faculty Workshop on Nanoscale Science & Engineering Education, Alabama A&M University (Huntsville, AL), Thursday, March 27, 2008:
    Can light be guided by a fiber whose diameter is much smaller than the wavelength of the light? Can we mold the flow of light on the micrometer scale so it wraps, say, around a hair? Until recently the answer to these questions was ‘no’. We developed a technique for drawing long, free-standing silica wires with diameters down to 50 nm that have a surface smoothness at the atomic level and a high uniformity of diameter. Light can be launched into these silica nanowires by optical evanescent coupling and the wires allow low-loss single-mode operation. They can be bent sharply, making it... Read more about Wrapping light around a hair
    Nonlinear optics at the nanoscale: all-optical logic gates, at Julius Springer Forum on Applied Physics, Harvard University (Cambridge, MA), Saturday, September 27, 2008:
    We explore nonlinear optical phenomena at the nanoscale by launching femtosecond laser pulses into long silica nanowires. Using evanescent coupling between wires we demonstrate a number of nanophotonic devices. At high intensity the nanowires produce a strong supercontinuum over short interaction lengths (less than 20 mm) and at a very low energy threshold (about 1 nJ), making them ideal sources of coherent white-light for nanophotonic applications. The spectral broadening reveals an optimal fiber diameter to enhance nonlinear effects with minimal dispersion. We also present a device that... Read more about Nonlinear optics at the nanoscale: all-optical logic gates
    Nonlinear optics at the nanoscale, at OPTOEL 2011 (Santander, Spain), Thursday, June 30, 2011:
    We explore nonlinear optical phenomena at the nanoscale by launching femtosecond laser pulses into long silica nanowires. Using evanescent coupling between wires we demonstrate a number of nanophotonic devices. At high intensity the nanowires produce a strong supercontinuum over short interaction lengths (less than 20 mm) and at a very low energy threshold (about 1 nJ), making them ideal sources of coherent white-light for nanophotonic applications. The spectral broadening reveals an optimal fiber diameter to enhance nonlinear effects with minimal dispersion. We also present a device that... Read more about Nonlinear optics at the nanoscale
    Ultrafast Phase Transitions in Semiconductors, at 2000 MRS Fall Meeting (Boston, MA), Tuesday, November 28, 2000:
    We present measurements of the dielectric function of various semiconducting materials (c-GaAs, a-GaAs and GeSb thin-films) over a broad energy range (1.5 - 3.5 eV) with a time resolution of 70 fs after the excitation with an ultrashort laser pulse. The time evolution of the dielectric function provides a wealth of information that allows identification and tracking of the electronic and structural dynamics triggered by the pump pulse. At elevated fluence levels all materials undergo a semiconductor to metal transitions.

Pages