Innovating education to educate innovators

NMES Faculty Education Network – Distinguished Speaker Series/King’s Education Talk
King’s College, London
June 25, 2021
Innovating education to educate innovators

@eric__mazur

NMES Faculty Education Network – Distinguished Speaker Series/King’s Education Talk
King’s College, London
June 25, 2021
try something different?
all of them
Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole
Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.
Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.
Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.
Before I tell you the answer, let’s analyze what happened.
Before I tell you the answer, let’s analyze what happened.

You…
Before I tell you the answer, let’s analyze what happened.

You…

1. made a commitment
Before I tell you the answer, let’s analyze what happened.

You...

1. made a commitment
2. externalized your answer
Before I tell you the answer, let’s analyze what happened.

You…

1. made a commitment
2. externalized your answer
3. moved from the answer/fact to reasoning
Before I tell you the answer, let’s analyze what happened.

You…

1. made a commitment
2. externalized your answer
3. moved from the answer/fact to reasoning
4. became emotionally invested in the learning process
Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole

1. increases.
2. stays the same.
3. decreases.
Consider a rectangular metal plate with a circular hole in it.

When the plate is uniformly heated, the diameter of the hole changes.

1. increases. ✓
2. stays the same.
3. decreases.
consider atoms at rim of hole
You won't forget this

Consider atoms at rim of hole
Higher learning gains
Higher learning gains

<table>
<thead>
<tr>
<th>normalized gain (%)</th>
<th>lecturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

A graph showing the normalized gain in learning through lecturing.
Higher learning gains for peer instruction compared to lecturing.
Higher learning gains
Better retention
INSTRUCTION
“How can I transfer online what I do in the classroom?”
(challenge)

“What can I do online that I cannot do in the classroom?”
(opportunity)
Moving online

synchronous ↔ asynchronous
Moving online

synchronous ↔ asynchronous

everybody together at the same time
Moving online

synchronous ↔ asynchronous

instructor-paced ↔ self-paced
Moving online

synchronous ↔ asynchronous

instructor-paced ↔ self-paced

everybody together at the same pace
Moving online

lecture

synchronous ↔ asynchronous

instructor-paced ↔ self-paced
Moving online

recorded lecture

synchronous ↔ asynchronous

instructor-paced ↔ self-paced
Moving online

lab

synchronous ↔ asynchronous

instructor-paced ↔ self-paced
Moving online

homework/study

synchronous ↔ asynchronous

instructor-paced ↔ self-paced
Moving online

- Synchronous
- Asynchronous
- Instructor-paced
- Self-paced
Moving online

- synchronous
- asynchronous
- instructor-paced
- self-paced
Moving online

- Synchronous → Asynchronous
- Instructor-paced → Self-paced
Moving online

synchronous → asynchronous
instructor-paced → self-paced

more time for personalized instruction!
Education in 21st century is not just about:

• transferring information

• getting students to do what we do

social engagement in & out of classroom a must!