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Ultrafast Dynamics and Optical Control of Coherent Phonons in Tellurium

Eric Mazur Christopher A. D. Roeser

Abstract

This dissertation reports the ultrafast dynamics of tellurium after excitation by one

or more intense femtosecond laser pulses. Irradiation of tellurium by femtosecond pulses is

known to excite coherent phonons, but the nature of the excitation process and the details of

the material dynamics under intense excitation are, as of yet, not precisely determined. We

investigate these dynamics by monitoring the response of tellurium using an optical pump–

probe technique designed to measure the dielectric tensor across the visible spectrum with

femtosecond time resolution.

The observed dynamics are similar to the ultrafast dynamics of molecules, where

photoexcitation of electrons establishes a new potential surface on which the nuclei move.

The time-resolved dielectric tensor measurements provide a “snapshot” of the material in

a particular lattice configuration. From the observed changes in the optical properties, we

infer the underlying changes in the lattice, and thereby develop a picture of the nuclear

motion.

We find that the main resonance for interband electronic transitions in tellurium

shifts to lower photon energy due to the lattice displacement that results from photoexcita-

tion. Under single pulse excitation, a rapid change in the equilibrium lattice configuration

leads to a long-lived shift in the resonance energy along with fast oscillations around this

value. Under double pulse excitation, the lattice dynamics can be controlled; we achieve

both enhancement and cancellation of coherent phonons for excitation strengths up to the

damage threshold.
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Chapter 1

Introduction

The work presented in this dissertation, while focused specifically on the dynamics

of tellurium, falls within the scope of ultrafast materials science. An emerging field at the

time of writing, ultrafast materials science lies at the crossroads of femtosecond optics and

condensed matter physics. At its most basic level, the research carried out in this field

involves using femtosecond laser pulses to initiate and probe (with sub-picosecond time

resolution) phase transitions already known to traditional condensed matter physicists and

materials scientists. The transition from a metal to an insulator with decreasing temper-

ature or with increasing disorder is known to occur for many materials, but the rapidity

with which these transitions can occur has only recently been observed.1

The recent emergence of ultrafast materials science as a bona fide field of research is

partly due to the development and commercialization of reliable femtosecond laser systems.

In the early days of femtosecond optics, the sought-after phase transition was not unlike

the speech by Salvador Dali on the previous page: it is finished too quickly to be dissected.

The push toward laser pulses of ever-shorter duration eventually provided researchers with
1See, for example, the dynamics of GaAs in Section 3.3, where the semiconductor becomes metallic within

a few picoseconds.

1



Chapter 1: Introduction 2

the tools to observe a material during its phase transition, rather than simply before and

after. The commercialization of these laser systems will alleviate the requirement that one

be a true “laser jock” in order to produce cutting-edge research, although that requirement

remains for the most part today.

Although the dynamics we initiate in tellurium with femtosecond laser pulses do

not lead to a phase transition, the material does approach a semiconductor-semimetal

transition, i.e., an indirect band crossing. Photoexcitation of tellurium excites coherent

symmetry-preserving (A1) phonons and the lattice displacement associated with this phonon

mode drives the material toward a semimetallic state. Theoretical calculations of the tel-

lurium band structure for lattice displacements along the A1 mode allow us to link the

observed changes in optical properties with the underlying changes in the material. Thus,

while in many ways a typical study in ultrafast materials science, the work presented here is

atypical in the sense that theoretical and experimental results join together to an unprece-

dented degree.

Organization of the Dissertation

Chapter 2 is a review of selected topics in optics and condensed matter, whose aim

is to familiarize the reader with the central issues of ultrafast materials science. We discuss

the relationship between the linear optical properties and the band structure of solids, the

dynamics known to occur in molecules and the analogous dynamics in solids, and some

nonlinear optical processes.

Chapter 3 describes the details of the experiment. This chapter leads the reader

through the process of measuring the time-resolved dielectric tensor of a solid, from deter-

mining the time resolution of the setup to how the error in our measurements is minimized.

We discuss examples of how our technique is used to investigate phase transitions in semi-
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conductors.

Chapter 4 reviews recent work on tellurium that is relevant to our results. The

information obtained through analysis of our dielectric tensor data is amplified in the context

of previous theoretical and experimental results, particularly the density function theory

calculations of tellurium with a displaced lattice.

Chapters 5 and 6 present the dynamics of tellurium under intense femtosecond

pulse excitation. We observe oscillations in the dielectric tensor that are mainly described

by a redshift and oscillation of the main resonance at the frequency of the A1 phonon mode.

Using two pump pulses, we demonstrate both enhancement and cancellation of the coherent

lattice vibrations, so-called “coherent control.”



Chapter 2

Optical Properties of Solids

The subject of electromagnetism in the presence of matter is both extensively

studied and rich in diverse phenomena. It spans such topics as the quantization of the elec-

tromagnetic field to the semiclassical treatment of light–matter interactions to the derivation

of the Fresnel reflectivity formulas. The justification for presenting an overview of the sub-

ject is somewhat obvious — the theoretical foundations that support the interpretation

of experimental results should be made clear, however the long history of optics and con-

densed matter physics preclude any sort of comprehensive review. Accordingly, this chapter

presents a distillation of the theoretical origins of the optical properties of solids.

4



Chapter 2: Optical Properties of Solids 5

2.1 Light–matter interactions

Fundamental to any description of light–matter interactions are Maxwell’s equa-

tions [1],

∇×E = −∂B
∂t

(2.1)

∇×H = −∂D
∂t

+ J (2.2)

∇ ·D = ρ (2.3)

∇ ·B = 0 (2.4)

where, along with the usual field terms, E,D,B, andH, are the source terms of charge ρ

and current J. The influence of matter is cast in terms of constitutive relations among the

fields,

B = µ0µH (2.5)

D = ε0εE (2.6)

J = σE (2.7)

for which the vacuum (matter-less) conditions are µ → 1, ε → 1, and σ → 0. As written,

the equations are essentially linear, in that an applied E field of frequency ω generates a D

field in the bulk of a material at ω and no other frequency. To isolate the response of the

material, we introduce the polarization P,

D = ε0E + P (2.8)

P = ε0χ
(1)E (2.9)

where the (linear) susceptibility χ(1) is related to the dielectric constant by ε =
(
1 + χ(1)

)
.

Linear optical properties are fully described by either ε or χ(1), which are complex, or by

the complex index of refraction η + iκ.1

1Although it seems obvious that transmission and absorption are determined by the “bulk” properties
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2.1.1 Relationship between linear optical properties and band structure

A detailed description of light-matter interactions, from a semiclassical or a quan-

tum mechanical point of view, is quite satisfying when executed well and abysmal when not.

Fortunately, we need not try to improve on success, and refer the reader to Refs. [2] and

[3]. Our task, then, is to highlight the aspects of the semiclassical desciption of light-matter

interactions that are of particular relevance for this thesis.

While the electromagnetic field is treated classically, the electrons are governed by

the Hamiltonian [2]

H =
p̂2

2m
+ V (r̂) +

e

mc
A · p̂ (2.10)

where the first term is a kinetic energy term involving the momentum operator p̂, the second

term is the electron–ion Coulomb interaction, and the third term encompasses the coupling

between the applied field (represented by the vector potential A) and the electrons.2 The

eigenstates of the above system in the absence of the perturbing field A are the well-known

Bloch wavefunctions |n,k〉, which in the position representation take the form

〈r|n,k〉 = un,k(r)ei(k·r). (2.11)

Here, un,k(r) is a function with the periodicity of the lattice potential V (r), and n and k

corresponds to the band index and crystal momentum, respectively, in the reduced-zone

scheme [4]. The energy eigenvalues En(k) constitute the band structure of the crystal.3

The difference between the band structures of different materials arises from differences in

their lattice potentials, due to variations in composition, lattice configuration, or both. Of

of a solid, this is also true of reflection. While surface quality affects the amount of scattered light, bulk
properties determine the amount reflected. This is emphasized in Eq. (2.8), where a driving term for the
generated D field is the material polarization created by the applied E field.

2It is apparent from the form of Eq. (2.10) that electron–electron, electron–phonon, electron–hole, and
other multibody interactions are not considered here.

3The Hamiltonian of Eq. (2.10), while ignoring important contributions from multibody interactions,
captures many of the essential characteristics of semiconductor band structures.
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particular interest to our experiments is the fact that a lattice potential that is changing

in time gives rise to a time-varying band structure. Ultrashort laser pulses allow one to

track the major features of the band structure via their manifestation in the linear optical

properties of the material.

To investigate the interaction of light with the system described by Eq. (2.10), we

consider the situation where the applied field excites electrons from an occupied (valence

band) state to an unoccupied (conduction band) state. The number and energy distribution

of such transitions give rise to the optical properties of a solid. Specifically, the imaginary

part of the dielectric tensor can be written as [2, 3]

Im [εi(ω)] ∼ 1
ω2

∑
nc,nv,k

δ (Enc(k)− Env(k)− h̄ω)
∣∣〈nc,k|p̂i|nv,k〉

∣∣2. (2.12)

The momentum matrix element quantifies the strength of the coupling for vertical transi-

tions between various conduction and valence band states.4 The dependence of the momen-

tum matrix element on the direction of the applied field, denoted by the subscript i = x, y, z,

allows for an anisotropic optical response (e.g., birefringence). The term common to all el-

ements of the dielectic tensor is the joint density of states (JDOS)

JDOS =
∑

nc,nv,k

δ (Enc(k)− Env(k)− h̄ω) , (2.13)

which depends solely on the shape of the band structure. The JDOS peaks at photon

energies equal to the transition energy between many different states in k space. The fact

that parallel conduction and valence bands produce a large peak in Im[ε(ω)] is a direct

consequence of the form of the JDOS in Eq. (2.13). In fact, the linear optical response of

many solids is dominated by only a few peaks in their JDOS — that is, by resonances at a

small number of photon energies produced by only a few regions of parallel bands.
4Although the coupling term of the Hamiltonian in Eq. (2.10) is proportional to the field A, the material

properties experienced by the applied field depend on its direction rather than its magnitude. Any field-
strength dependence of the susceptibility results in a fundamentally nonlinear system.
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Figure 2.1: (a) Band structure [3] and (b) dielectric function [5] of GaAs.

It is important to note that the correspondence between band structure and di-

electric function is not one-to-one. Many band structures can produce the same dielectric

function,5 which means that the interpretation of optical properties must be done cau-

tiously. Changes in the linear optical properties can be used to make general statements

about the changes in band structure, but additional information is often required to localize

the dynamics in k space.

As an example of the direct relationship between band structure and dielectric

function, Figure 2.1 shows the band structure and the dielectric function of GaAs. The

characteristic absorption peaks in Im[ε(ω)] at 3.1 eV (E1) and 4.7 eV (E2) are due in part

to a large joint densities of states around the L and X valleys, as indicated by the shaded

regions in Figure 2.1(a). The real part shows the characteristic dispersive structure for each

absorption peak, in agreement with the Kramers–Kronig relations.
5The dependence of the dielectric function on the JDOS (Eq. (2.12)) illustrates how the essential distinc-

tion among band structures — their k-dependence — is lost in the summation.
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2.1.2 The Drude–Lorentz model

The Drude–Lorentz model, also known as the Lorentz oscillator model when ap-

plied to semiconductors and as the Drude model when applied to metals, attempts to

describe the optical response of a material as that of a classical harmonic oscillator. While

simple, involving only a few free parameters, the Drude–Lorentz model is surprisingly good

at describing the optical properties of many semiconductors and metals.

The Lorentz model describes, in a phenomenological way, the polarization induced

in a material by the applied E field. The situation we consider is that of an electron in a

solid that is described by its displacement x from its equilibrium position.6 The equation

of motion for the displacement x is taken to be that of a harmonic oscillator,

d2

dt2
x + Γ

d

dt
x + ω2

0x = F (t) (2.14)

where Γ is a phenomenological damping coefficient, ω0 is the resonance frequency of the

oscillator (a real resonance in the material), and the driving force is due to the applied field,

F (t) =
e

m

[
Ee−iωt + E∗eiωt

]
. (2.15)

Without loss of generality, the equation of motion for x(t) can be solved by neglecting the

second driving term above and considering a trial solution of the form x(t) = Ce−iωt. . .

C[−ω2 − iΓω + ω2
0]e

−iωt =
e

m
Ee−iωt (2.16)

⇒ C =
e

m
E

1
ω2

0 − ω2 − iΓω
(2.17)

⇒ x(t) =
e

m
E

e−iωt

ω2
0 − ω2 − iΓω

. (2.18)

While x(t) describes the motion of a single electron, it is often the case that many electrons

in a solid respond in the same fashion. Thus, if N electrons respond as x(t), then the total
6We take the ions to be fixed in this derivation.
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polarization is given by

P (t) = Nex(t) = ε0χ
(1)E(t), (2.19)

where Eq. (2.9) is used to relate the applied field E(t) to the polarization P (t) and to

introduce the linear susceptibility. Hence,

χ(1) =
Ne

ε0

x(t)
E(t)

=
Ne2

ε0m

1
ω2

0 − ω2 − iΓω
. (2.20)

For our purposes, the dielectric function is more useful than the susceptibility, and takes

the form,

Re[ε(ω)] = 1 + f
E2

res − (h̄ω)2

(E2
res − (h̄ω)2)2 + (Γ · h̄ω)2

(2.21)

Im[ε(ω)] = f
Γ · hω

(E2
res − (h̄ω)2)2 + (Γ · h̄ω)2

. (2.22)

There are two methods by which the Lorentz model is applied to real absorbing

materials. First, because the Lorentzian shape of Im[εLorentz(ω)] is similar to a δ-function,

materials can be modeled by a distribution of Lorentz oscillators, analogous to the distri-

bution of δ-function contributions to the JDOS in Eq. (2.13). The sum of many oscillators

would produce a “single resonance” in the material (e.g., the E2 peak in GaAs). However,

for modeling changes in the dielectric function on a femtosecond time scale, this technique

is numerically challenging to implement (due to noise in the data) as well as physically

unsatisfying in the interpretation of its results.

A second method of applying the Lorentz model to real materials is to describe an

entire resonance by the three free parameters of a single oscillator; the resonant frequency

ω0, the linewidth Γ, and the oscillator strength f = Ne2/ε0m. Each parameter is connected

to features of the band structure. The resonant frequency ω0 corresponds to the position of

the peak in the JDOS. The linewidth Γ is related to the distribution of energy levels around
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Figure 2.2: Lorentz oscillator model fits to (a) Te and (b) GaAs. Black lines represent
literature values of Re[ε] (solid) and Im[ε] (dashed) [5], while gray lines represent the best-
fit values of Re[εLorentz] (solid) and Im[εLorentz] (dash-dotted).

the resonant frequency — sharper absorption lines correspond to smaller values of Γ, arising

from regions of parallel bands. Lastly, the oscillator strength f carries information about

the number of states contributing to the resonance at ω0.

As an example of the success of the Lorentz model in describing real materials,

Figure 2.2 shows fits to Te and GaAs. In each case, the fit is the sum of two Lorentz

oscillators with different values of ω0, Γ, and f for each term. This two-oscillator model

follows the major features of the literature optical properties in each case, but fails to capture

smaller features. For example, Im[εLorentz(ω)] does not vanish for photon energies below the

band gap, nor is it sensitive to sharp features near other critical points. Nevertheless, the

Lorentz model is sensitive to large resonances in a material — the parameters of the fit to

GaAs in Figure 2.2(b) indicate resonances at 3.18 eV (E1 peak) and 4.67 eV (E2 peak).7

The form of the Drude model for metals is

εDrude(ω) = 1 +
Ne2

ε0m

(
iτ

ω(1− iωτ)

)
, (2.23)

7For completeness, the parameters of the fit to Te are ω1 = 2.37 eV, Γ1 = 1.28 eV, f1 = 105 eV2, ω2 = 9.39
eV, Γ2 = 4.43 eV, f2 = 170 eV2, and an additive constant to the real part of 3.66. The parameters of the
fit to GaAs are ω1 = 3.18 eV, Γ1 = 0.75 eV, f1 = 38.7 eV2, ω2 = 4.67 eV, Γ2 = 1.14 eV, f2 = 125 eV2, and
an additive constant to the real part of 1.85. The real additive constant arises from Kramers–Kronig-type
contributions from resonances outside the spectral range of the fit, as discussed in Section 2.1.3.
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Figure 2.3: Drude model fit to Ag. Black lines represent literature values of Re[ε] (solid)
and Im[ε] (dashed) [5], while gray lines represent the best-fit values of Re[εDrude] (solid) and
Im[εDrude] (dash-dotted).

which is equivalent to Eqs. (2.21) and (2.22) with Γ → 1/τ and ω0 → 0. By convention, a

plasma frequency is defined ω2
p = Ne2/ε0m to play the role of the oscillator strength above.

The classical derivation of εDrude(ω) is analogous to the above derivation for εosc(ω), except

that an induced current J rather than an induced polarization P results in a differential

equation that lacks a harmonic potential term [4]. The optical properties of many metals

consist of a Drude (intraband) contribution from “free” electrons in half-filled bands in

addition to Lorentz oscillator (interband) contributions from available vertical transitions.

That is, even good metals are rarely described by the Drude model alone. To illustrate this

fact, Figure 2.3 shows a Drude model fit to Ag, with ωp = 8.3 eV and τ = 50 fs. While the

fit describes low-photon-energy behavior well, it is not accurate near 4 eV due to resonance

contributions to ε(ω).

2.1.3 The Kramers–Kronig relations

Thus far we have discussed both the real and the imaginary part of the dielectric

function as if the two quantities were independent. In reality, Re[ε(ω)] and Im[ε(ω)] are
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linked through the Kramers–Kronig relations [6]

Re[ε(ω)] = 1 +
2
π
P
∫ ∞

0
dν

ν Im[ε(ν)]
ν2 − ω2

(2.24)

Im[ε(ω)] =
2ω

π
P
∫ ∞

0
dν

1− Re[ε(ν)]
ν2 − ω2

(2.25)

where P represents the principal value of the integral. It is worth noting that the Kramers–

Kronig relations follow from the fact that the electric field E drives the material polarization

P, as in Eq. (2.9) [6]. Interestingly, the availability of transitions at a single photon energy

contributes locally to Im[ε(ω)] (see Eq. (2.12)) but affects Re[ε(ω)] globally according to the

Kramers–Kronig relations. For fitting dielectric function data to the Lorentz model when

some of the material resonances lie outside the measured spectal range, the expression for

the imaginary part will fit the data correctly due to the local contribution of transitions,

but the real part will have unaccounted-for global contributions. It is often the case that

an additive constant to the real part can dramatically improve the fit by playing the role

of these Kramers–Kronig-type contributions from resonances outside the detected spectral

range. Since the real part of the Lorentz model is mostly constant far from a resonance,8

a single additive-constant free parameter is often sufficient to capture all the resonance

contributions to Re[ε(ω)] from outside the spectral range of the data.

2.2 Ultrafast dynamics of solids under intense

photoexcitation

Despite the broad array of topics that fall under the title “ultrafast dynamics of

solids,” the discussion below is of limited range. For instance, we do not discuss the myriad

of electronic phenomena that have been observed at low excitation densities of 1014 to 1018

cm−3, a review of which can be found in Ref. [7]. The reason for this omission is that such
8The real part varies significantly within a linewidth Γ of the resonance frequency ω0.
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phenomena are rarely observed in experiments where the excited carrier density is on the

order of 1022 cm−3. Although excited carrier effects are present and are more pronounced

than at lower densities, the material dynamics are often dominated by the ionic motion

that results from excitation of a significant fraction of the valence electrons. The text that

follows is an attempt to present the framework in which these dynamics are understood.

2.2.1 Molecular dynamics and coherent control

The idea that solid dynamics are determined by ionic motion is rooted in the

microscopic picture of molecular electronic transitions and molecular dynamics. In fact,

the molecular case is even more extreme than the solid one — photoexcitation in molecules

often results in dissociation, whereas the sharing of electrons in a solid leads to only a partial

weakening of bonds under photoexcitation.9 Consider a diatomic sodium molecule, where

the energy of the system as a function of nuclear displacement is as shown in Figure 2.4.

The curves in this figure show the energy of the system in different electronic configurations

as a function of ionic separation. Often, the excited state potentials have a shape that

results in dissociation (no minimum at finite separations) or bond stretching (a minimum

at a different separation than the ground state). When this is the case, electronic transitions

are coupled to molecular vibrational transitions [8], where our intuition predicts that the

ensuing nuclear motion is determined by the new potential in a classical way — an excitation

from the ground X 1Σ+
g state to the 2 1Πg state of Figure 2.4 would leave the nuclei displaced

from equilibrium and they will thus begin to oscillate. The idea that the nuclei remain fixed

during the electronic transition10 is equivalent to the approximation of vertical transitions

in crystals and is known as the Franck-Condon principle [8].
9It is rarely the case that a pump pulse is intense enough to provide one photon for every valence electron

in the pumped volume of the solid.
10This is also representative of the Born-Oppenheimer approximation, where the electronic quantum

numbers are the so-called “fast variables” and the nuclear positions are the “slow variables.”



Chapter 2: Optical Properties of Solids 15

Figure 2.4: Potential energy curves for a diatomic sodium molecule, showing bond stretching
or dissociation for different excited state potentials. Numbers 1, 2 and 3, indicate the
possible transitions to products in a two-pulse excitation scheme after the first pulse excites
the electronic system to 2 1Πg. After Ref. [9].

The quantum mechanical derivation of molecular excited state dynamics was first

provided by Heller [10, 11]. To summarize, immediately after photoexcitation, the ground

nuclear eigenstate evolves on the excited state potential surface following the classical tra-

jectory. The anharmonicity of the excited state potential determines the rate at which the

nuclear wavepacket spreads and leads to deviations from the classical trajectory. Of pri-

mary interest in our case is understanding the way in which the resulting nuclear dynamics

can affect properties such as the dielectric function. Heller points out the lack of such a

description at the time, stating

After the electrons have made a transition, the nuclei experience new forces;
they find themselves displaced relative to the equilibrium geometry of the new
potential surface, and interesting dynamics should ensue. Unfortunately, most
discussions of electronic transitions cut short any allusions to dynamics and
explain the absorption spectrum in terms of Franck-Condon overlaps of the
initial nuclear wavefunction with a time-independent vibrational eigenfunction
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of the upper electronic potential surface. We (and the nuclear wave function) are
left hanging; we are given no explanation of the time evolution of the hapless
nuclei which, once the photon is absorbed, are ready to move in ways that
determine the spectra [11].

Before making the connection between molecular and crystal dynamics, we discuss

an important application of Heller’s work — the coherent control of molecular dissociation.

Tannor, Kosloff, and Rice devised a scheme under which the dissociation dynamics of a

hypothetical molecule can be controlled simply by varying the time delay between two

femtosecond pulses [12, 13]. They considered a ground state potential energy surface with

one bound state (ABC) and two dissociated states (AB + C, A + BC), along with different

excited state potential surfaces. They demonstrated that by allowing the nuclear wave

function to propagate on the excited state potential for specific (different) lengths of time

before the second pulse arrives, the “final product” of the two-pulse excitation can be

controlled.11 Experimental realizations of end-product control in molecular dissociation (in

systems such as that of Figure 2.4) have been achieved with multiple-pulse and shaped-pulse

excitations [9, 14].

2.2.2 The molecular picture of crystal dynamics

Many of the features of the dynamics of solids can be understood within the

framework described above, albeit with some extensions. Photoexcitation of a large density

of electrons establishes a new potential energy surface on which the ions move. The new

potential may have no minimum near the initial lattice configuration, resulting in large

nuclear displacements, disordering, and often “damage.” If a new potential minimum is

established, then the ions can respond to the new potential in a more controlled fashion.
11For an anharmonic excited state potential, the ability to control the end products is reduced, essentially

because the projection of a spread nuclear wave function onto the ground state potential can “split” the
wave function between the two end products.
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Nuclear motion on the new potential energy surface leads to commensurate changes in the

band structure, and, in turn, in the optical properties of the solid. That is, the available

transitions for the electrons are determined by the lattice configuration, the dynamics of

which are determined by the excited electrons.

Additional considerations when discussing solids concern the treatment of the “ex-

cited electronic state.” First, the manifold of excited energy states is virtually a continuous

function of the excited electron density. In general, the excited electron density cannot spec-

ify an unique potential because of the possible permutations of transitions among the 1023

cm−3 valence electrons. The idea that material dynamics depend on the excited electron

density alone is an approximation that holds when the carriers can thermalize before any

significant nuclear motion occurs. Excited electrons (holes) thermalize within 10 fs at den-

sities of 1021 cm−3 or more,12 leading to a Fermi-Dirac distribution within the conduction

(valence) band and a loss of memory of the initial excited carrier configuration. Because

the ions spend most of their time (all but 10 fs) evolving on a potential determined by a

Fermi-Dirac distribution of carriers, the excited electron density is often sufficient to specify

the “excited electronic state.” A second concern is that the electronic state and the nuclear

state do not evolve independently. A particular excited electron distribution establishes a

potential surface to which the lattice responds by deformation. This deformation results in

a new band structure, resulting in a redistribution of electrons and, in general, a modified

potential. In essence, the excited electron potential becomes a dynamic quantity which

depends on the nuclear coordinates. These many-body interactions are more pronounced

in solids than in molecules and can dynamically modify the potential energy surface and

further perturb the semiclassical trajectories of the ions. Electron-electron interactions of
12At densities of 1018 cm−3, carrier thermalization occurs within hundreds of femtoseconds [15]. Ex-

trapolation of the results of Becker et al. [15] to 1021 cm−3 gives a thermalization time on the order of 10
fs.
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exchange and correlation, electron-phonon interactions, and other many-body interactions

offer avenues by which the electron distribution within a band can exert a force on the ions.

Even with the further complications of dealing with solids, nuclear dynamics can

still be treated with excited state potential surfaces. The accuracy of “exact” calculated

results for solids will be less than for molecules, simply due to the increased complexity of

a condensed system. Usually, approximations to reduce the complexity of the system make

the problem tractable and model a specific experimental situation. We present an example

of such a treatment in the following section.

2.2.3 Ultrafast disordering of zincblende semiconductors

The observation of laser-induced disordering on a time scale shorter than the ther-

malization time between excited carriers and the lattice was observed by a number of groups

working with semiconductors [16, 17, 18, 19, 20]. Although the disordering of solids via ther-

mal processes (i.e., melting) has been known for a long time, a theoretical description of

lattice instability as a result of photoexcitation was first provided by Stampfli and Ben-

nemann [21, 22]. Apparently derived independently from the work described above, their

treatment of zincblende semiconductors shares many features with the molecular description

of nuclear motion on an excited state potential.

Stampfli and Bennemann consider a tight-binding Hamiltonian that includes nearest-

neighbor interactions only. A calculation of the potential surface for the lattice in the ground

electronic state configuration is shown for silicon in Figure 2.5(a). A clear minimum exists

as a function of transverse acoustic (δt) and longitudinal optical (δl) lattice distortions, in-

dicating a stable lattice. The band structure and optical properties of the calculated ground

state configuration agree well with the known properties of Si. After photoexcitation, the
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(a) (b)

Figure 2.5: Potential energy surface as a function of transverse acoustic (δt) and longitudinal
optical (δl) lattice displacements for silicon (a) in the ground state electronic configuration
and (b) when 15% of valence electrons are excited to the conduction band. The stable
minimum at δt = δl = 0 becomes unstable for sufficient excitation densities, as shown here.
After Ref. [22].

excited electrons rapidly take on a Fermi-Dirac distribution13 and the lattice potential is

recalculated with the different band-filling. As shown in Figure 2.5(b), when 15% of valence

electrons are excited to the conduction band,14 the lattice potential no longer displays a

stable minimum at the ground state lattice configuration. The calculated trajectory of the

ions is shown in Figure 2.6, displaying oscillations and translation in one direction and pure

translation in another, following the shape of the potential in Figure 2.5(b). The significant

motion of ions on a time scale of 100 fs agrees with the experimental results of many groups

[16, 17, 18, 19, 20], and the onset of metallic behavior on this time scale has also been

observed [23, 24].

The main difference between the response of silicon and that of Na2 molecules
13Immediately after photoexcitation, the excited electrons are distributed in the conduction band according

to the pump spectrum.
14In practice, the excitation of 15% of valence electrons to the conduction band is rarely achieved in

pump–probe experiments. Excitation of a few percent of valence electrons is both more common and often
sufficient to initiate phase transitions.
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Figure 2.6: Trajectory of ionic motion on the potential shown in Figure 2.5(b). Significant
nuclear displacements are predicted to occur within 100 fs. After Ref. [22].

to photoexcitation is that an ensemble of ions, rather than two, are set in motion on a

new potential surface. As shown in Figure 2.6, the ionic motion is confined to a certain

path for all initial conditions (within a certain range). The physical mechanisms underlying

the response of tellurium to intense photoexcitation are similar to those that govern the

response of silicon. Whereas nuclear motion in silicon develops along two directions, the

photoinitiated nuclear motion in tellurium affects only a single lattice parameter. Moreover,

the excited state potential in tellurium has a minimum near the initial lattice configuration,

which leads to lattice vibrations that are analogous to the vibrations observed in Na2.

2.3 Nonlinear optical properties

Although the majority of this thesis concerns linear optics in solids, nonlinear

optical processes are encountered as well. A nonlinear optical response occurs when fields

of frequency different than that of the applied field are generated. The nonlinear response

is usually isolated from the linear one, and Eq. (2.9) becomes

P = ε0χ
(1)E + PNL (2.26)

PNL = ε0χ
(2) : E ·E + ε0χ

(3) :: E ·E ·E + · · · . (2.27)
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Essentially, the material response is expanded in powers of the applied E field. Note that the

total field is involved in driving the polarization and this total field may involve contribu-

tions from laser pulses of different frequency travelling in different directions with different

field polarizations. The total polarization then acts as a driving term, as in Eq. (2.8), to

radiate fields at the fundamental frequency15 as well as at the frequency of the nonlinear

polarization.

Broadly speaking, there are two criteria which must be satisfied in order to generate

nonlinear radiation. For a nonlinear process involving n fields of the form16

Ej(t) =
1
2

(
Eje

i(~kj ·r−ωjt) + E∗
j e−i(~kj ·r−ωjt)

)
, (2.28)

for j = 1 . . . n, these criteria are

ωNL =
n∑

i=1

±ωi (2.29)

~kNL =
n∑

i=1

±~ki (2.30)

where the choice of sign indicates whether the “ω” or the “−ω” term of a particular field

contributes, as determined by the particular nonlinear process considered and the experi-

mental arrangement. Equation (2.29) is always satisfied in a nonlinear process and specifies

the nonlinear frequency generated. Equation (2.30) is the “phase-matching” condition and

determines the direction of the radiated nonlinear field.17 In the remainder of this Section,

we present an overview of second- and third-order nonlinearities and refer the interested

reader to Ref. [25] for further details.
15The “fundamental” frequency refers to the center or carrier frequency of the applied E field.
16Here and for the remainder of the discussion we ignore the polarization of the applied E field.
17Many details of phase-matching are omitted here because they are beyond the scope of this thesis. See

Refs. [25] and [26].
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2.3.1 Second-order nonlinearities

The type of second-order nonlinear process most often encountered in the lab is

second harmonic generation (SHG), which involves two degenerate driving fields (ω1 = ω2)

of the form in Eq. (2.28). The nonlinear polarization generated by SHG is

P (2)(2ω1) = ε0χ
(2)(2ω1 : ω1, ω1)E1E1e

i(~k(2ω1)·r−2ω1t) (2.31)

where the criteria of Eqs. (2.29) and (2.30) involve only positive terms (e.g., ωNL = ω1+ω1).

We have allowed for less-than-perfect phase matching because the dispersion of the material

determines whether ~k(2ω1) = 2~k(ω1). When the phase matching is not perfect, the nonlinear

field generated at different positions in the crystal intefere somewhat destructively, reducing

the total radiated nonlinear field.

The most common application of SHG is in measuring the duration of a femtosec-

ond pulse via autocorrelation. In practice, two copies of the same pulse are overlapped in a

nonlinear crystal with a controllable delay τ between the two pulses. Because the nonlinear

field depends on the total intensity, the SHG signal S varies with the temporal overlap of

the pulses. One can extract the pulse duration from the shape of S(τ).18 An example of

autocorrelation is given in Section 3.1.1.

2.3.2 Third-order nonlinearities

In general, third-order nonlinearities require three driving fields. In practice, two

or even all three fields are degenerate. One situation of particular interest is the following
18The ease of such a measurement makes it attractive, but it does not fully characterize the temporal

profile of the laser pulse [27].
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interaction between two fields of frequency ω1 and ω2

P (3)(ωNL) =
1
2
ε0χ

(3)(ωNL : ω1,−ω1, ω2)E1E
∗
1E2e

i(~k2·r−ω2t) (2.32)

ωNL = ω1 − ω1 + ω2 (2.33)

~kNL = ~k1 − ~k1 + ~k2 (2.34)

This particular nonlinear mixing can result in intensity-dependent effects. For χ(3) real,

an intensity-dependent index of refraction leads to self-focussing of a gaussian beam.19 An

imaginary χ(3) produces intensity-dependent absorption (i.e. two-photon absorption). Both

phenomena are widely applied in the field of optics. Self-focussing, or Kerr lensing, is used

to mode-lock oscillators and contributes to the generation of white-light femtosecond pulses.

Two-photon absorption (TPA) is commonly used for cross-correlation of ultrashort pulses20

because it is automatically phase-matched and produces a field at the fundamental.

Of particular interest to researchers is how nonlinear susceptibilities are related to

(and can reveal) material properties. For instance, the process of two-photon absorption

described in Eq. (2.32) does not occur unless a photon of energy h̄(ω1 + ω2) would be

absorbed linearly. This is not to say that Im[χ(3)] depends on Im[χ(1)]. Rather, both

depend on the availability and distribution of, in this case, vertical electronic transitions.

In addition to electronic transitions, the existence of lattice vibrations (phonons)

serves to enhance nonlinear susceptibilities, in particular χ(3), via the change in linear optical

properties with lattice distortion. When the interaction in Eq. (2.32) is used to probe (or

excite) a phonon ωv of a solid where ω1 − ω2 = ωv, it is called a Raman interaction. The

form of the phonon contribution to the nonlinear susceptibility is given by [25]

χ
(3)
Raman(ω2 : ω1,−ω1, ω2) ∼

(
∂α

∂q

)2 1
ω2

v − (ω1 − ω2)
2 + 2i (ω1 − ω2) γ

, (2.35)

19For self-focussing, and any other self-action effects, ω1 = ω2.
20See Section 3.1.1.
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where q is a displacement of the lattice associated with the phonon and γ is the associated

damping constant. By convention, ω2 is referred to as the Stokes frequency when ω2 < ω1

and as the anti-Stokes frequency otherwise. The quantity α is the polarizability of the

material, which changes as the lattice is distorted. Note that χ
(3)
Raman contains a resonance

denominator of similar form to the linear susceptibility in Eq. (2.20), however the “strength”

of the Raman process depends on the sensitivity of the polarizability to lattice displacement.

Analogous to the electronic case, where an applied field induces an oscillating electronic

polarization that leads to excitation of an electron, Raman interactions lead to the excitation

of phonons.

2.4 Summary

The availability of electronic transitions, the existence of vibrational modes, and

the dynamics of nuclei all influence the optical properties of solids. In this chapter we have

laid the foundation for the discussion of the properties of tellurium in Chapter 4 and for

the interpretation of the time-resolved dielectric function data in Chapters 5 and 6.



Chapter 3

Experimental Method

Ultrafast optics has blossomed into a mature but still rapidly developing field of

science since subpicosecond pulses were first generated in 1976 [28]. The variety of ultrafast

spectroscopy techniques has grown with the development of ultrafast laser sources [29].

Many of these techniques [7, 30] are exquisitely sensitive to the pertubations induced by

specific excitations in material systems. At the same time, significant advances have been

made in the development and commercialization of ellipsometers, a review of which is given

by Collins [31]. Materials scientists have used ellipsometry as a tool to study the electronic

structure of metals [32], as a noninvasive probe of layer thicknesses and composition in

multi-layer stack systems [33], and as an in situ monitor of thin film growth rates [34].

Recent interest in the dynamics of highly photoexcited materials1 calls for mea-

surement techniques that function as monitors of both electron and lattice dynamics. Highly

excited solid state materials, especially semiconductors, are of interest for industrial appli-

cations as well as for fundamental scientific reasons. Potential applications include mi-

cromachining using femtosecond laser pulses and developments in modern high power laser
1Here, highly photoexcited refers to excitation near or above the threshold for permanent damage, where

the excited electron density is 1020 cm−3 or greater.

25
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diodes, in which the injection currents generate very high carrier densities. The challenge in

understanding the physics of high carrier densities lies in determining the dominant process

among the many that occur and in tracking the phase state of the material.

To meet this challenge, we have developed a technique that measures the dielectric

function of a material with femtosecond time resolution. By measuring ε(ω) with femtosec-

ond time resolution, we can infer the structural and electronic dynamics that occur during

a photoinduced phase transition from the direct relationship between band structure and

electron occupation and ε(ω). Using a probe with a broad spectral range provides infor-

mation at many transition energies, which reveals the redistribution of bonding strengths

as the material changes phase. The dielectric function can also be used to determine the

density of excited carriers and even transient carrier distributions in k space.

In this chapter we present a dual-angle-of-incidence pump–probe reflectometry

technique for measuring the femtosecond time-resolved dielectric tensor of a solid. In Section

3.1, we discuss the experimental details of white-light pump–probe spectroscopy. In Section

3.2, we discuss how this reflectometry technique can be used on various solid materials. In

Section 3.3, we show femtosecond time-resolved measurements of the dielectric function of

GaAs and a-GeSb, and discuss them in relation to previous pump–probe reflectivity results.

3.1 Pump–probe methods

3.1.1 Measuring laser pulse durations

Before a femtosecond pulse is used in any experiment, its pulse duration must be

measured. Pulsed laser damage thresholds of solids vary with pulse duration, and the ulti-

mate time resolution of a pump–probe experiment is directly derived from pulse duration.

For the experiments presented here, the latter issue is of paramount importance and is the
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Figure 3.1: A schematic representation of an autocorrelation measurement (left) and a
typical autocorrelation trace where two photon absorption is the interaction mechanism
(right).

subject of this section.

The most common method of ultrashort pulse measurement is the autocorrelation,

depicted in Figure 3.1. Replicas of the same femtosecond pulse are overlapped in a nonlinear

crystal after one of the pulses traverses a path of variable optical delay. The photodiode (PD)

in Figure 3.1 measures a time-integrated signal S(τ) that depends on the delay τ between

the two pulses. The nonlinear interaction mechanism (described in Section 2.3) allows

one pulse to optically “gate” the other — deviations in the signal depend on the degree

of temporal overlap between laser pulses.2 Precisely how the signal trace is interpreted

depends on the type of nonlinearity that couples the two laser pulses.

Any further discussion of pulse duration measurements at this point would suffer

from the lack of a mathematical description of the pulse itself, which we rectify below. A

laser pulse of duration T and of center frequency ω0 can be described by3

E(t) ∼ Eenv(t)eiω0t−iφ(t) (3.1)

Eenv(t) ∼ e−2 log[2]( t
T )2

(3.2)
2The bandwidth of electronic devices is insufficient for measuring femtosecond pulses, and thus mea-

surements must be done optically. Similarly, investigations of ultrafast processes in solids cannot be done
electronically.

3The envelope of femtosecond laser pulses are approximately gaussian or 1/ cosh2 in shape. Gaussian
pulses are discussed because they allow analytical expressions of the autocorrelation trace to be derived.
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where φ(t) is the phase of the pulse and log is loge unless otherwise indicated. By convention,

the pulse duration T is the FWHM of the intensity I(t) ∼ |E(t)|2. The local frequency is

defined as

ω(t) = ω0 −
dφ

dt
. (3.3)

The inclusion of the time-dependent phase can result in a chirped pulse, which we discuss

in Section 3.1.3. For now, we take ω(t) = ω0.

As mentioned above, the nonlinear interaction in the material determines the pre-

cise shape of the autocorrelation trace. Producing a catalog of autocorrelation traces for

various types of nonlinearities would try the patience of both the reader and the author,

so we consider the particular case of two-photon absorption. From the form of this χ(3)

nonlinearity (see Eq. (2.32)), the photodiode in Figure 3.1 detects the signal S(τ)

S(τ) ∼ Sbkg −
∣∣∣∣∫ dt E(t)I(t− τ)

∣∣∣∣2 . (3.4)

The background signal Sbkg arises from transmission of the detected pulse in the absence

of the second pulse. The transmitted field decreases in the presence of the second pulse

because one photon from each pulse is destroyed to excite an electron. Substituting the

expression for the electric field given above and carrying out the integration yields

S(τ) ∼ Sbkg − e
−4 log[2]

„
τ√

3/2T

«2

(3.5)

A typical autocorrelation trace of this kind is shown in Figure 3.1. The FWHM of the trace

is directly related to the pulse duration T by the numerical factor
√

3/2.

Related to the autocorrelation measurement is the cross-correlation, where the

two interacting pulses are of different pulse durations, say T1 and T2. Usually, the pulse

duration of one is known or measurable via autocorrelation (e.g., the pump of a pump–probe

experiment) and the other is not because of the dispersive effects of transmissive optics or
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Figure 3.2: Schematic representation of white-light pump–probe setup. BS = polarizing
beam splitter; M = flat mirror; PM = parabolic mirror; L = lens; P = polarizer; λ/2 =
half-wave plate.

because the pulse energy is too low to perform an autocorrelation (e.g., the probe). The

shape of the cross-correlation trace is again gaussian, and performing an integral similar to

Eq. (3.4) yields the unknown pulse duration T1,

T1 =

√
(FWHM)2 − T 2

2

2
. (3.6)

Note that the degenerate case (T1 = T2) corresponds to an observed FWHM of
√

3/2T2.

3.1.2 White-light pump–probe setup

Figure 3.2 shows a schematic representation of the experimental setup. We use

a commercially available Ti:sapphire oscillator to seed a home-built, 1-kHz repetition rate,

Ti:sapphire multipass amplifier which produces 40-fs, 0.5-mJ pulses at 800 nm. The design

of the amplifier follows that of Backus et al. [35].

As Figure 3.2 shows, a femtosecond pulse is split into a pump and a probe pulse at
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the beamsplitter (BS). The pump pulse is directed to the sample via a variable delay stage,

allowing for adjustable time delays between the pump and the probe pulse. The pump pulse

is focused onto the sample using a slowly focusing lens (0.20-m focal length). The pump

spot size can be adjusted according to specific experimental requirements by varing the

distance from the lens to the sample, but remains at least four times larger than the probe

spot to ensure probing of a homogenously excited region. After the beamsplitter, the probe

and the pump pulses pass through waveplate–polarizer combinations. The polarizer in the

probe line is crossed to that of the pump line, and the waveplate–polarizer combination in

each arm allows for adjustment of the probe- and pump-pulse energies.

A white-light probe pulse is generated by focusing the 800-nm pulse into a 3-

mm thick piece of CaF2. A number of nonlinear optical processes, including self-focusing

and self-phase modulation, contribute to the generation of this white-light continuum [36].

Due to the 10.2-eV band gap of CaF2, the broadband continuum extends from the near

infrared to the near ultraviolet [37]. As shown in Figure 3.3, the majority of the probe pulse

energy remains at the seed wavelength of 800 nm. A 1.5-mm Schott BG-40 filter is used to

flatten the spectrum, making it suitable for charge-coupled-device spectrometer detection

and preventing damage of the sample.

The white-light pulse is split into a probe and a “reference” pulse by a 1-mm thick

piece of sapphire. The probe pulse is focused on the sample with a parabolic mirror and

recollimated with an acromatic lens. Both the probe and reference pulses are directed into

a 1-to-1 imaging spectrometer. A broadband polarizer is inserted between the sample and

the spectrometer to prevent scattered pump light from reaching the detector and to ensure

that only p polarized light is measured. We monitor the reference pulse spectrum to correct

for shot-to-shot probe fluctuations, as discussed in Section 3.2.4.

Maintaining femtosecond time resolution with the large bandwidth of the white-
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Figure 3.3: Spectrum of the white-light pulse generated in CaF2. The solid and dashed
curves show the spectrum of the white-light pulse before and after passing through the
BG-40 filter, respectively.

light probe pulses requires specific attention. While reflective optics are used to deliver the

white-light pulse from the CaF2 to the sample, the BG-40 filter, the sapphire beam splitter,

and the CaF2 itself contribute to dispersive stretching (chirp) of the probe. In order to

regain the original time resolution, the measured reflectivity transients at each wavelength

are time shifted to correct for this chirp. The chirp of our white-light probe pulse is shown in

Figure 3.4. The data in Figure 3.4 correspond to a spectrally-resolved “time zero” between

the pump and white-light probe, measured by pump–probe cross-correlations using two-

photon absorption [38]. We obtain traces similar to the autocorrelation trace of Figure

3.1, where the maximum dip marks “time zero” for that photon energy. The width of the

cross-correlations indicate that the time resolution of the apparatus is better than 50 fs for

all wavelengths of the probe.4

4Two-photon-absorption-based cross-correlations have the disadvantage of being asymmetric: the intense
pump pulse alone promotes carriers via two-photon absorption and, subsequently, free carrier absorption of
the probe causes the trace to be asymmetric. Hence, this technique can be used to estimate time resolution
using only the rising edge of the cross-correlation trace.



Chapter 3: Experimental Method 32

time delay (fs)
e
n

e
rg

y
 (

e
V

)

−300 150 3000

2.8

2.4

2.2

2.0

1.8
−150

2.6

Figure 3.4: Temporal chirp of the white-light pulse. The full circles indicate data points
measured using two-photon absorption. The solid curve is a second order polynomial fit
through the data.

3.1.3 Calculated time resolution of white light probe

The chirp of the white-light probe significantly affects the time resolution of our

experimental apparatus. In fact, the probe would be only a few femtoseconds long if the

chirp were removed. In our experiment, the probe is chirped to about 1 ps in duration, yet

the actual time resolution is much shorter due to the shape of the chirp. To understand

why, we develop a method for calculating the time resolution for each spectral component

of the probe, which draws from the work of Kovalenko et al. [39].

We take the white-light probe to have the spectrum and chirp shown in Figure

3.5(a). The chirp shown here is the time of arrival, at an arbitrary point in space, of each

spectral component of the probe. From the spectrum and chirp, the pulse is constructed

from a Fourier transform via

E(t) =
2√
2π

∫ ∞

0
dω′ E(ω′)e−iω′t (3.7)

where

E(ω) =
√

I(ω)eiφ(ω) (3.8)
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Figure 3.5: (a) Spectrum and chirp of white-light probe pulse. (b) Pulse intensity I(t)
constructed from data in (a).

and

φ′(ω) = −t0(ω). (3.9)

A given chirp t0(ω) produces a frequency-dependent phase-delay in E(ω), which in turn

creates a time-varying local frequency in E(t). In our case, the chirp is mostly linear, so

the pulse I(t) in Figure 3.5(b) looks similar to “a spread out version” of the spectrum.

Notice, however, that the sharp features near 1.55 eV are smoothed out in the process of

constructing the pulse.

Once the E field of the white-light pulse is calculated, the time resolution of our

pump–probe experiment can be determined. The experimental situation we consider is a

pump–probe cross-correlation using two-photon absorption, where the photodiode in Figure

3.1 is replaced by a spectrometer. The observed spectrogram S(ω, τ), analogous to the trace

S(τ) in Eq. (3.4), is

S(ω, τ) ∼ Sbkg −
∣∣∣∣∫ dt eiωtE(t)I(t− τ)

∣∣∣∣2 (3.10)

where E(t) is the white-light probe pulse and I(t) is taken to be a 31.5 fs transform-limited

pump pulse centered at 800 nm to simulate our experimental conditions. The procedure for

determining the time resolution of each spectral component of the probe is as follows. At
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Figure 3.6: Time resolution as a function of photon energy for the chirped white-light probe.
For reference, the spectrum (arbitrary units) and chirp is also shown.

each frequency, the cross-correlation trace S(ω, τ) is calculated by numerically performing

the integral in Eq. (3.10). The trace is then fit to a gaussian in order to extract the

FWHM. Using Eq. (3.6), the FWHM of the trace, and T2 = 31.5 fs, we determine the probe

pulsewidth T1 at each frequency of the probe. The results of this calculation are shown

in Figure 3.6. The variation in the time resolution with photon energy results from the

curvature of the chirp — a steeper slope in the near UV than in the near IR results in 60

fs rather than 20 fs time resolution. Of course, the shape of the spectrum is important as

well, and the almost linear downward trend in pulse duration toward the IR is halted by

the structure in the white-light spectrum between 1.4 eV and 1.7 eV.

3.2 Dual-angle reflectometry method

The dielectric function fully describes the linear optical properties of a material.

In general, ε(ω) consists of a real and an imaginary part. The imaginary part peaks at

energies where the joint density of states is large, i.e., where a large number of electronic

transitions are available (see Section 2.1.1). The real part is related to the imaginary part

through the Kramers–Kronig relations and exhibits a dispersive “wiggle” at each absorptive
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peak in the imaginary part (see Section 2.1.3).

The most widespread method of measuring ε(ω) is ellipsometry [40]. In standard

continuous wave (cw) ellipsometry, reflectivity values are typically measured at a fixed angle

of incidence while the polarization of the incident light (or the orientation of a polariza-

tion analyzer) is rotated through 180◦. A large number of data points allows an accurate

determination of the real and imaginary part of ε(ω) by inverting the Fresnel reflectivity

formulas. Alternatively, the Kramers–Kronig relations between Re[ε(ω)] and Im[ε(ω)] can

be used to determine the full dielectric function from the measurement of just one part.

Previous experiments have measured the real part of the refractive index over a very wide

frequency range [41], and determined the imaginary part using the Kramers–Kronig rela-

tions. For an accurate calculation of the unknown quantity, it is necessary to measure the

known quantity from dc to infinite frequency.

In order to measure the dielectric function of highly excited materials, we employ

a dual-angle-of-incidence reflectometry technique. The finite bandwidth of the femtosecond

probe prohibits using the Kramers–Kronig relations, requiring measurement of at least two

quantities to determine Re[ε(ω)] and Im[ε(ω)]. If one knows the geometry of the sample

to be investigated, two measurements are sufficient to determine ε(ω). This should be

contrasted with ellipsometry, where no prior knowledge of the sample is assumed and where

at least three measurements are needed to determine its optical properties [42]. Although a

true ellipsometry-type technique could produce results with smaller error than the technique

described here, changes in the dielectric function of highly excited materials (see Section

3.3) can exceed 50% in both the real and imaginary part, which is an order of magnitude

greater than the error in our apparatus. In addition, studying highly excited materials often

involves pump fluences above the threshold for permanent damage of the material, where

sample size limits the number of measurements that can be made. Thus, the two-angle
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reflectometry technique permits measurement of the dynamics of highly excited materials

over a wider range of excitation fluences and time delays than true ellipsometry without a

significant sacrifice in accuracy.

In the remainder of this section, we discuss how to design a two-angle-of-incidence

reflectometer. First, we consider the case of an isotropic material, then expand the discus-

sion to include multilayer systems and anisotopic materials.

3.2.1 Determining ε(ω) of isotropic materials

Because the dielectric function of a material is not directly measurable, constitutive

equations are necessary to relate measurable quantities, such as reflectivity and transmis-

sivity, to ε(ω). In cw multiple-angle-of-incidence ellipsometry, measurements are performed

over a range of incident angles, and ε(ω) is found by numerical inversion of the appropri-

ate constitutive equation with high accuracy and precision. For an isotropic material, the

Fresnel formulas [43] are used to relate reflectivity to ε(ω):

rp =
ε cos θ −√ε0

√
ε− ε0 sin2 θ

ε cos θ +
√

ε0
√

ε− ε0 sin2 θ
, (3.11)

rs =
√

ε0 cos θ −
√

ε− ε0 sin2 θ
√

ε0 cos θ +
√

ε− ε0 sin2 θ
, (3.12)

where rp and rs are the field reflectivities — the ratios of the reflected and incident complex

E fields — for p and s polarization, respectively, and θ is the angle of incidence from medium

“0.” The power reflectivity R is given by the absolute square of the Fresnel factors, e.g.,

Rp = |rp|2. We extract both Re[ε(ω)] and Im[ε(ω)] from two measurements of the absolute

reflectivity. Using the minimum number of measurements to determine ε(ω) by numerical

inversion requires a careful choice of operating parameters — namely, the polarization and

angle of incidence.

To determine the optimum polarization and angle of incidence for the two mea-
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surements, we calculate reflectivity pairs over a range of dielectric constant values using

Eqs. (3.11) and (3.12). Figure 3.7(a) shows a grid of dielectric constant values as well as the

dielectric functions of four materials (Te, Si, GaAs, and Sb) over the spectral range of our

probe (1.5 – 3.5 eV). If we choose to perform measurements at a 45◦ angle of incidence, p

and s polarization, this grid of values is mapped into the reflectivity space shown in Figure

3.7(b). With this choice of operating parameters, the grid of dielectric values collapses onto

a line, and so the experimental uncertainty in the measurement of absolute reflectivities

will translate into a large uncertainty in dielectric constant values after numerical inversion.

Although shown for a 45◦ angle of incidence, the same problem occurs when the s and p

polarized reflectivity are measured at any single angle of incidence.

When both measurements are taken with p polarized light at different angles of

incidence, the uncertainty in extracting ε(ω) can be reduced to reasonable levels. Figures

3.7(c), 3.7(d), and 3.7(g) show the mapping of the grid of dielectric constant values into

reflectivity space for 45◦ angle of incidence paired with 60◦, 75◦, and 83◦, respectively.

As the second angle is increased, the grid of points in (a) spreads over a larger range of

reflectivities because the pseudo-Brewster angle5 is approached for many of the dielectric

constant values.

With the general notion of “a good spread” in reflectivity space in mind, we wish to

fine-tune our choice of angles. In addition, we desire a sense of “how good” our technique

can be, given a certain amount of uncertainty in measuring each reflectivity. If f is the

constitutive relation between reflectivity and dielectric constant, R = f(ε, θ), then(
∆R(θ1)
∆R(θ2)

)
= J

(
∆ε1
∆ε2

)
, (3.13)

5Absorbing materials do not possess a Brewster angle because the p polarized reflectivity is non-zero
for all angles of incidence. The pseudo-Brewster angle is defined as the angle for which the p polarized
reflectivity is minimized.
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Figure 3.7: (a) The dielectric functions of Si, GaAs, Sb, and Te (from 1.5 to 3.5 eV) are
plotted over a grid of dielectric constant values. In (b), (c), (d), and (g), the Fresnel formula
are used to calculate reflectivity pairs at the angles and polarizations indicated for each of
the points in (a). In (e) and (f), contour plots represent the uncertainty in extracting
Re[ε(ω)] and Im[ε(ω)], respectively, given a 1% error in measuring the reflectivity for the
parameters indicated in (d). Plots (h) and (i) are analogous to (e) and (f), but are calculated
for the parameters indicated in (g). In all four contour plots, the representative materials
are overlayed as a reference.

where

J =

 ∂f(θ1)
∂ε1

∂f(θ1)
∂ε2

∂f(θ2)
∂ε1

∂f(θ2)
∂ε2

 , (3.14)

is a Jacobian matrix and ε = ε1 + iε2. Inverting Eq. (3.13) yields the uncertainty in the

dielectric constant as a function of the uncertainty in reflectivity,(
∆ε1
∆ε2

)
= J−1

(
∆R(θ1)
∆R(θ2)

)
. (3.15)
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Assuming a 1% uncertainty in each reflectivity measurement, ∆R/R = 0.01, Eq. (3.15)

predicts the uncertainty in extracting the real or imaginary dielectric constant as a function

of ε1 and ε2. Figures 3.7(e) and 3.7(h) are contour plots of the relative uncertainty (∆ε1/ε1)

in the real part of the dielectric constant for the angles and polarizations in Figures 3.7(d)

and 3.7(g), respectively. The dielectric functions of the three reference materials are over-

layed to show the resulting uncertainty in the dielectric functions of these materials. The

decrease in error at 83◦ vs. that at 75◦ is more apparent in these figures than in Figures

3.7(d) and 3.7(g). At 75◦, the uncertainty in Re[ε(ω)] of silicon is as much as 20%, but

remains below 2% at 83◦. Similar improvements are seen for the other reference materials.

The uncertainty in the imaginary part of the dielectric constant also improves in going from

75◦ to 83◦, as shown in Figures 3.7(f) and 3.7(i). While the uncertainty is generally lower

at 83◦ than at 75◦, it does increase for certain values of (ε1,ε2), illustrating the fact that

different angle-of-incidence pairs are optimal for different materials.

In order to find ε(ω) after performing pump–probe reflectivity measurements at

the chosen angles of incidence, we numerically invert the constitutive equations (in the case

of an isotropic material, the Fresnel formulas). The numerical inversion algorithm is based

on the simplex downhill method [44], which minimizes the difference between the measured

reflectivities and the reflectivities calculated via the constitutive equations for trial values

of Re[ε(ω)] and Im[ε(ω)] at each wavelength and time delay.

3.2.2 Extension to oxide layers, thin films, and uniaxial materials

To obtain the dielectric function of an isotropic material, Eqs. (3.11) and (3.12) are

required to relate ε(ω) to the sample reflectivity. In practice, a single interface between the

vacuum and a semi-infinite isotropic sample is rare. In this section, we introduce constitutive

equations that relate the observed reflectivity to the dielectric functions of multi-layer and
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anisotropic materials.

Multilayer systems

Many solid materials develop a native oxide layer when exposed to air. Typically,

native oxide layers are 1 – 10 nm thick with ε(ω) a real constant ranging from 4 to 10 in

the visible [45]. For optical experiments, especially at high angles of incidence, the native

oxide layer greatly affects the reflectivity of the sample.

A general procedure for calculating the reflectivity of a multilayer stack is the

matrix method described by Born and Wolf [43]. The system of interest is the multilayer

stack depicted in Figure 3.8. We define a characteristic matrix for each layer l,

Ml =

 cos βl − i
ql

sinβl

−iql sin βl cos βl

 , (3.16)

where

ql =
1
εl

√
εl − ε0 sin2 θ0 (3.17)

and

βl =
ω

c
hlql. (3.18)

Variables εl and hl denote the dielectric constant and thickness of layer l, respectively, and

θ0 is the angle of incidence of p-polarized light to the stack. If there are N layers between

the incident medium (labeled “0”) and the substrate (labeled “N + 1”), the characteristic

matrix for the entire stack of layers is the matrix product

M =
N∏

l=1

Ml. (3.19)

The reflectivity of the sample is calculated from the elements of the 2 × 2 matrix M and
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Figure 3.8: A multi-layer stack of N layers between the ambient (ε0) and a semi-infinite
substrate (εN+1).

the optical properties of the incident medium and the substrate [43]:

R = |r|2

=
∣∣∣∣(M11 + M12 qN+1) q0 − (M21 + M22 qN+1)
(M11 + M12 qN+1) q0 + (M21 + M22 qN+1)

∣∣∣∣2 . (3.20)

Equation (3.20) is the constitutive equation that relates the sample reflectivity

to the dielectric function and thickness of each layer. For choosing angles of incidence

and numerically extracting the dielectric function of a thin film or substrate, the role of

Eq. (3.20) is identical to that of the Fresnel equations for isotropic materials, as described

in Section 3.2.1. The layer thickness is determined by continuous wave ellipsometry or in

the manner described in Section 3.2.3; the thickness is not determined from the numerical

inversion.
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Uniaxial materials

The crystal symmetry of an isotropic material reduces its 3×3 dielectric tensor to

a single dielectric function times the identity matrix. Uniaxial materials, such as tellurium,

have crystal symmetries that distinguish a c axis from an ab plane. As a result, the dielectric

tensor has two independent elements. The ordinary dielectric function εord(ω) describes the

optical properties for E fields in the ab plane while the extraordinary dielectric function

εext(ω) describes the optical properties for E fields along the c axis. For these materials,

full optical characterization requires measuring four quantities — the real and imaginary

parts of εord(ω) and εext(ω).

Earlier works [46, 47, 48] have derived equations for the reflectivity of uniaxial

materials in various geometries. A geometry of particular interest to our technique is the

following. Consider a three-medium structure of vacuum–oxide–substrate, where the oxide

layer is isotropic but the substrate is uniaxial. The reflectivity is given by [43]

R =
∣∣∣∣ r01 + r12e

2iβ1

1 + r01r12e2iβ1

∣∣∣∣2 , (3.21)

where r01 and r12 are the field reflectivities of the vacuum–oxide and oxide–substrate inter-

faces, respectively, and β1 is calculated from Eq. (3.18). The vacuum–oxide reflectivity is

given by the Fresnel formulas. The reflectivity of the oxide–substrate interface depends on

the orientation of the c axis. If the c axis lies along the interface and is perpendicular to

the plane of incidence, as in Figure 3.9(a), the p polarized reflectivity is given by Eq. (3.11)

with ε → εord. If the c axis lies along the interface and in the plane of incidence, as in

Figure 3.9(b), the p polarized reflectivity is given by

r12 =
n‖n⊥ cos θ − nox

√
n2
⊥ − n2

ox sin2 θ

n‖n⊥ cos θ + nox

√
n2
⊥ − n2

ox sin2 θ
, (3.22)

where n‖ =
√

εext, n⊥ =
√

εord, and nox =
√

εox is the complex index of refraction of the
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Figure 3.9: Reflection configurations where the surface contains the c axis: the c axis is (a)
perpendicular or (b) parallel to the plane of incidence. The E field is p polarized in both
cases.

oxide layer.

Of the possible field polarizations and c-axis orientations, the reflection geometries

of Figure 3.9 are the most sensitive for two-angle-of-incidence measurements of εord(ω) and

εext(ω). For the geometry of Figure 3.9(a), the reflectivity depends solely on the ordinary

dielectric function because the E field is perpendicular to the optic axis. Using the same

analysis as in Section 3.2.1, two angles of incidence are chosen and the time-resolved ordinary

dielectric function is measured. Then, in the geometry of Figure 3.9(b), the extraordinary

part of the dielectric tensor can be extracted using Eqs. (3.22) and (3.21) because the

values of εord(ω) have been measured for each time delay and pump fluence. In addition to

being sensitive to the two dielectric functions of interest in each case, these measurement

geometries have the practical advantage of being related by a 90◦ rotation of the sample.
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3.2.3 Measuring absolute reflectivities

The constitutive relations in Sections 3.2.1 and 3.2.2 relate the dielectric function

to absolute reflectivity. Thus, the experimental challenge lies in measuring the absolute re-

flectivity of a sample when reflective and transmissive optical elements modify the spectrum

of the probe pulse before it reaches the detector. The calibration of the detection system

must account for these absorptive losses. Since the probe and reference beams are split

from the same pulse, the detected spectra [Sprobe(ω) and Sref(ω)] can be used to calibrate

our system. For a particular sample, the ratio of the detected spectra is

Sprobe(ω)
Sref(ω)

=
g(ω)
h(ω)

R(ω), (3.23)

where h(ω) accounts for the absorptive losses in the reference beamline and g(ω) accounts

for the losses in the probe beamline, separate from the sample reflectivity R(ω). In order

to calibrate the system we must measure g(ω)/h(ω), which is independent of the sample

under investigation. From the above equation,

g(ω)
h(ω)

=
Sprobe(ω)
Sref(ω)

1
R(ω)

. (3.24)

For a sample of known optical properties, we can calibrate the apparatus by measuring

Sprobe(ω) and Sref(ω) and taking R(ω) to be the calculated reflectivity of the sample for

a given angle of incidence. When multiple reference samples are used, the quality of the

sample of interest can be verified and the confidence in the calibration can be improved.

The above-described method of calibration can also be used to measure the angle

of incidence of the white-light probe and the thickness and dielectric constant of any oxide

layers. To perform such a measurement, as many reference samples are used as there are

unknowns. All reference samples are aligned to the same (possibly unknown) angle of

incidence using a HeNe laser. The values of Sprobe/Sref × 1/R(ω) for different samples only
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Figure 3.10: A contour plot of the uncertainty in the calibration as a function of photon
energy for a range of possible angles of incidence (b) finds the angle of incidence to be 82.5◦

(dotted line). The calibration data is shown in (a) for this angle.

agree when the reflectivity is calculated at the correct angle of incidence and with the correct

oxide layer thicknesses and dielectric constant values. Using as many reference materials

as unknowns ensures that all curves agree for only the correct values of the unknowns.

Figure 3.10(b) is a plot of the uncertainty in the calibration among three reference samples

(standard deviation divided by mean) at each photon energy in the probe for a range of

possible incident angles. The reference samples are sapphire, GaAs with an oxide layer

of known thickness, and Te in the geometry of Figure 3.9(a). The mean uncertainty is

lowest for the angle indicated by the dotted line in Figure 3.10(b), marking the actual angle

of incidence of the probe (82.5◦) for the case presented here. Figure 3.10(a) shows the

agreement between the three samples for this angle of incidence. The calibration is taken

to be the average of the three curves in Figure 3.10(a). Using this method of analysis, the

angle of incidence and oxide layer thicknesses can be determined to an accuracy of 0.1◦

and 0.5 nm, respectively. These uncertainties do not significantly affect the final assigned

uncertainty in ε(ω). They can be folded into the analysis of Section 3.2.1 to minimize their

effects (see Section 3.2.4). Whenever possible, oxide layers are determined in a separate

measurement to avoid the effects of parameter correlation [33, 49].

The uncertainty in measurements of the absolute reflectivity depend on both the
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accuracy of the calibration and the shot-to-shot fluctuations of the probe. If the experiment

is carried out at pump fluences below the threshold for permanent damage, multiple shots

can be averaged at the repetition rate of the laser source. We find that the resolution of

our setup in this multiple-shot mode is on the order of ∆R/R = 10−3 when 5000 laser shots

are acquired. However, this is not the accuracy in measuring the absolute reflectivity due

to the approximate 1% uncertainty in the calibration. For experiments at pump fluences

near or above the damage threshold, the sample must be translated between shots so that

each pulse strikes a new spot on the sample. The single-shot operation mode carries larger

uncertainties (∆R/R ≈ 5%) than that of the calibration because sample area limits the

number of spectra that can be accumulated at each time delay and pump fluence. On

the other hand, the dynamics of highly excited materials (e.g., the semiconductor-to-metal

transitions in GaAs) are accompanied by signal variations of ∆R/R ≈ 200%, so the signal-

to-noise ratio is still high.

To calculate the uncertainty in ε(ω), dielectric constant values for the four pairs of

reflectivities [R(θ1)±∆R(θ1), R(θ2)±∆R(θ2)] are extracted from the numerical inversion

algorithm. Error bars are taken from the two values maximally displaced from the dielectric

constant value associated with [R(θ1), R(θ2)].

3.2.4 Estimate of total experimental error

The analysis of Section 3.2.1 handles the estimation of error in extracting the

dielectric function on a somewhat superficial level. In particular, the assumed accuracy

of ∆R/R = 0.01 disregards the angular dependence of the accuracy of calibration. Each

reference material is aligned to the sample with 0.1◦ accuracy, and the effect of this uncer-

tainty on the uncertainty of the calibration changes with the angle of incidence. Below we

present a correction to the error calculation of Section 3.2.1, resulting in clear choices for
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the optimum angles of incidence for a given sample material.

In order to provide a better estimate of the uncertainty in reflectivity (∆R of

Eq. (3.15)), consider the following expression, which is the “experimental version” of Eq. (3.23),

R = C ×
S̄probe

S̄ref
(3.25)

where C is the measured calibration (h/g in Eq. (3.23)), and S̄ is an average spectrum of N

white-light pulses (typically, N = 5000).6 Formally, the relative uncertainty in reflectivity

can be written in terms of two contributions[
∆R

R

]2

=
[
∆C

C

]2

+ 2
[
∆S̄

S̄

]2

. (3.26)

The error term ∆S̄/S̄ results from shot-to-shot fluctuations in white-light intensity

when taking measurements of the sample. The values of Sprobe and Sref fluctuate by as much

as 25% due to the nonlinear mechanisms of white-light generation. However, the uncertainty

(∆S̄/S̄)2 decreases with averaging over many laser pulses and is no worse than 0.252/N .

The factor of 2 in Eq. (3.26) accounts for fluctuations in both probe and reference beams,

which tends to over-estimate the actual uncertainty because it ignores the fact that these

fluctuations are not independent.

The error term ∆C/C represents uncertainty in the value of the calibration, which

arises from errors in the alignment of reference materials as well as from fluctuations in

white-light intensity during the calibration process. From an expression for the calibration
6It is usually the case that a mixture of on-CCD-chip averaging of Sprobe and Sref and an averaging of

sets of S̄probe/S̄ref occur in a given experiment. In general, the smallest errors occur when on-chip averaging
is kept to a minimum.
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C, we derive an expression for the uncertainty. . .

C =
1
n

n∑
j=1

Cj =
1
n

n∑
j=1

Rj
S̄ref,j

S̄probe,j
(3.27)

⇒ ∆C2 =
1
n

n∑
j=1

([
∆R

R

]2

j

+ 2
[
∆S̄

S̄

]2

j

)
C2

j (3.28)

⇒
[
∆C

C

]2

≈ 1
n

n∑
j=1

([
∆R

R

]2

j

+ 2
[
∆S̄

S̄

]2

j

)
(3.29)

where n is the number of materials used in measuring the calibration, S̄j is the average of

N spectra collected for the jth material, and Rj is the reflectivity of the jth material as

calculated from literature values of its optical properties. The uncertainty in the calculated

reflectivity arises from alignment errors (∆θ = 0.1◦), and the ∆S/S term is described above.

The approximation step is an important one, where we take Cj ≈ C for all materials.

Without such a step, values of the measured spectral intensity must be provided, which is

usually difficult to do before an experiment begins. Using Eq. (3.29) and rewriting [∆R/R]j

in terms of ∆θ, Eq. (3.26) becomes[
∆R

R

]2

= 2
(0.25)2

N
+

1
n

n∑
j=1

([
1
Rj

∂Rj

∂θ
∆θ

]2

+ 2
(0.25)2

N

)
. (3.30)

While Eq. (3.30) does not take into account every source of error in the experi-

ment,7 it does reveal significant sources of error beyond the analysis of Section 3.2.1. Figure

3.11 shows the result of using Eqs. (3.15) and (3.30) to determine the ideal angles of inci-

dence for measuring the ordinary dielectric function of tellurium. The uncertainty in Re[ε]

or Im[ε] shown in Figure 3.11 is the average uncertainty over the spectral range of the probe

(1.5 eV to 3.5 eV). The reference materials used for this calculation are sapphire, GaAs,

and Si. The conclusion from Figure 3.7 that smaller uncertainties occur when one angle is

close to the pseudo-Brewster angle of the sample is reproduced in this analysis — the error
7For instance, uncertainty in the angle of incidence as determined by the methods of Section 3.2.3 alters

the mapping of reflectivity pairs to dielectric function.
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Figure 3.11: Contour plots of the average uncertainty in (a) Re[ε] and (b) Im[ε] for possible
angle-of-incidence pairs.

decreases as one angle approaches 80◦.8 The insight gained from this analysis is the degree

to which the choice of reference material affects the uncertainty. As one of the angles of

incidence approaches the Brewster (or pseudo-Brewster) angle of one of the reference mate-

rials, the uncertainty greatly increases. As shown in Figure 3.11 , one such increase occurs

at the Brewster angle of sapphire (∼ 60.6◦). The effects of choosing the semiconductors

Si and GaAs are distributed across multiple angles because each material has a different

pseudo-Brewster angle for each color of the probe, although the feature at 75◦ results from

their inclusion. While it is always possible to use certain reference materials for calibration

at low angles of incidence and others at high angles, Figure 3.11 shows that this is certainly

not necessary. Good accuracy in extracting the dielectric function occurs when the first

angle of incidence is near the pseudo-Brewster angle of the sample, the second angle is at

least 10◦ away from the first, and neither angle is very close to the Brewster angle of any

of the reference materials (in particular, transparent materials).
8The pseudo-Brewster angle of εord of tellurium varies from 80◦ at 1.5 eV to 81.5◦ at 2eV to 72◦ at 3.5

eV.
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3.3 Time-resolved dielectric function measurements

As an illustration of our technique, we present measurements of the femtosecond

time-resolved dielectric function of an isotropic material (GaAs) and a thin film (a-GeSb).

Discussion of measurements of an anisotropic material (Te) are reserved for Chapters 5

and 6. We briefly discuss the importance of these results and compare them to other

measurements of the material dynamics.

3.3.1 Ultrafast carrier and lattice dynamics in GaAs

Shortly after the introduction of femtosecond laser sources, numerous experiments

were conducted on semiconductors where a transition to a metallic state was observed upon

laser irradiation. Experimental techniques included pump–probe reflectivity measurements

[16], both reflectivity and second harmonic measurements [50, 19, 17, 18], and pump–probe

microscopy [51, 52]. While a laser-induced phase transition was observed in each experiment

with high precision, the nature of the resulting phase and the changes in the band structure

were difficult to determine. This difficulty is due to the fact that many different values of

ε(ω), and hence many different band structures and material phases, can yield the same

reflectivity at a particular angle of incidence.

We performed single-shot femtosecond time-resolved dielectric function measure-

ments of GaAs to investigate carrier and lattice dynamics associated with its ultrafast

semiconductor-to-metal transition under intense photoexcitation [23, 53]. Figure 3.12 shows

dielectric function measurements of GaAs. Without excitation of the sample, ε(ω) matches

literature values of the dielectric function [5], confirming that our technique measures the

dielectric function correctly. Figure 3.12(b) shows ε(ω) 500 fs after excitation below the

threshold for permanent damage (Fth = 1.0 kJ/m2). Shortly after excitation, before the

ions of the lattice can move, changes in ε(ω) are due to the presence of excited carriers in
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Figure 3.12: Dielectric function data for GaAs — • = Re[ε], ◦ = Im[ε]. (a) Under no
excitation, ε(ω) matches literature values of the dielectric function, represented by the solid
and dashed curves [5]. An example of changes in ε(ω) due to the presence of excited carriers
is shown in (b). (c) At sufficiently high pump fluences, a semiconductor-to-metal transition
is observed, as evidenced by the fit to the Drude model (ωp = 13.0 eV and τ = 0.18 fs).

the conduction band. The decrease of Im[ε(ω)] around the E1 critical point (near 3 eV)

is likely due to Pauli blocking of the transition by electrons in the conduction band. At

higher excitation fluences, a transition to a metallic state is observed, an example of which

is shown in Figure 3.12(c). This data is well fit by the Drude model, which describes free-

electron (metallic) behavior. The parameters of the fit (a plasma frequency of 13 eV and

a relaxation time of 0.18 fs) reveal that virtually all of the valence electrons are free and

that the band gap has completely collapsed. Theoretical calculations of the evolution of the

dielectric function of GaAs after femtosecond-pulse excitation agree with our experimental

results [54, 55, 56].
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3.3.2 Ultrafast phase changes in a-GeSb

The speed of ultrafast phase transitions and the large reflectivity variations asso-

ciated with them make materials that display such transitions good candidates for optical

switches and high speed optical data storage. Thin films of a-GeSb allow optically induced,

optically reversible amorphous-to-crystalline transitions. In 1998, Sokolowski-Tinten and

co-workers presented normal-incidence reflectivity measurements which suggested that fem-

tosecond pulses above the threshold for permanent crystallization can induce an ultrafast

disorder-to-order transition in amorphous Ge0.06Sb0.94 films within 200 fs [57]. The sug-

gestion of a subpicosecond amorphous-to-crystalline phase transition raises an important

question: how can lattice ordering occur in less time than it takes to establish thermal

equilibrium between the laser-excited electrons and the lattice?

We performed single-shot dielectric function measurements of a 50-nm thin film

of a-Ge0.06Sb0.94 to determine the nature of the phase during its ultrafast phase transition

[58]. Figure 3.13(a) shows the agreement between ε(ω) obtained at a time delay of −1 ps

and literature values of the dielectric function [5]. As a reference, the dielectric function of

the crystalline phase is also shown.9 Because the film was optically thin and covered by a

1.25-nm SbO2 oxide layer [59], this sample is considered a four-medium system: air, oxide,

a-GeSb thin film, and fused silica substrate.

Figure 3.13(b) shows the response of the dielectric function 200 fs after arrival of

a pump pulse of fluence F = 320 J/m2, which is 60% above the threshold for permanent

crystallization (Fcr). At this excitation fluence, the dielectric function remains unchanged

from 200 fs to 475 ps. The same dielectric function is observed on subpicosecond time scales

for all fluences above Fcr, indicating the existence of a nonthermal phase after femtosecond-
9Literature values of ε(ω) for c-Ge0.06Sb0.94 are not available. The data presented are measurements

taken in our apparatus of a region of the sample that was permanently crystallized by laser irradiation.
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pulse excitation. The existence of a new phase at ultrashort time delays for all fluences

above Fcr was correctly identified by the authors of Ref. [57], however, the material is not

crystalline, as evidenced by the discrepancy between the measured dielectric function and

that of the crystalline phase (see Figure 3.13(b)). This discrepancy is brought out by Figure

3.13(c), which shows the normal-incidence reflectivity as calculated from our time-resolved

dielectric function measurements. Only at the 2.01-eV photon energy of the experiments in

Ref. [57] does the reflectivity at 200 fs after excitation above Fcr match that of the crystalline

phase. Furthermore, even at 2.01 eV, we find that for angles of incidence near or above

the pseudo-Brewster, the reflectivity does not go to the crystalline level for pump fluences

above Fcr. Our measurements thus show that broadband measurements of ε(ω) enable one

to distinguish phases that may appear the same based on reflectivity or transmission for a

single photon energy at a single angle of incidence.

3.4 Summary

The time-resolved dielectric function measured with this reflectometry technique

provides the most information of any linear optical probe, revealing changes in the lattice

bonding, carrier distribution, and phase of a material. We avoid the necessity of assuming a

particular model of the material dynamics as well as the potential pitfalls of other methods

that measure changes in reflectivity at a single photon energy. While a representative set of

sample types is presented, this technique can be extended to any sample geometry, provided

a constitutive relation between reflectivity and dielectric tensor exists.

An extension of this technique would be useful as a probe of the interaction between

substrate and oxide layer. Under intense excitation, both above and below the threshold for

permanent damage, the substrate can alter its lattice configuration or lose order completely.
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Figure 3.13: (a),(b) Dielectric function data for a-GeSb thin films — • = Re[ε(ω)], ◦
= Im[ε(ω)]: (a) ε(ω) under no excitation (−1 ps time delay), and (b) ε(ω) 200 fs after
excitation of 320 J/m2. In both plots, the solid and dashed curves show the real and
imaginary parts of ε(ω) for the amorphous phase from previous measurements,[60] and the
dotted and dash-dotted curves show the real and imaginary parts of ε(ω) of the crystalline
phase. (c) Normal-incidence reflectivity calculated from the time-resolved ε(ω) data. The
reflectivity of the amorphous, crystalline, and liquid phases are shown for reference.

Yet, the dynamics of the oxide layer during the phase transition of the substrate are often

ignored. Additional measurements at other angles of incidence could enable monitoring the

substrate along with the thickness of the oxide layer and its optical properties. Given the

accuracy of spectroscopic ellipsometry in measuring thin film characteristics, a pump–probe

ellipsometer may be the ideal device for such an application because any change in oxide

layer thickness, dielectric function, or in the oxide–substrate interface, is likely to be small

on the picosecond time scale.



Chapter 4

Previous Work on Tellurium

In order to provide the reader a context in which to view the results presented

in Chapters 5 and 6, we present a review of the relevant work on tellurium that has pre-

ceded this thesis. In this chapter we discuss the crystal structure, optical properties, and

calculated band structure of tellurium, as well as the results of several groups that have

performed experimental and theoretical investigations of the dynamics under femtosecond

pulse excitation.

4.1 Structural and optical properties of tellurium

The crystal structure of tellurium is that of three-atom per turn helices arranged

in a hexagonal array. In crystallographic terms, tellurium is trigonal with space group

P3121–D4
3 and a three-atom basis at (u01

3 ,0u2
3 ,ūū0) [61]. Figure 4.1 shows the structure of

tellurium viewed down the c axis. The equilibrium lattice constants are a = 0.4456 nm and

c = 0.5927 nm, the ratio of the helical radius to the interhelical spacing a is u = 0.2633, and

each atom is spaced vertically by c/3 [61]. Each tellurium atom has two nearest neighbor

bonds of length r = 0.2834 nm and four second nearest neighbor bonds of length R = 0.3494

55
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a

u

r R

Figure 4.1: Crystal structure of tellurium viewed down the c axis. Ions of the same shading
are in the same plane (black-shaded ions are below the page, white-shaded above). Solid
lines indicate nearest neighbor bonds, dashed lines indicate second nearest neighbor bonds,
and dash-dotted lines indicate bonds to ions in planes not shown here. In the equilibrium
configuration, helices are formed with radius u = 0.2633a, the lattice constant of the trigonal
arrangement of helices is a, and the spacing between planes is c/3.

nm [61].

The lattice structure of tellurium has many normal modes of vibration, that is,

many phonon modes.1 Although all of the six optical phonon modes in Te have been excited

coherently and detected, the symmetry-preserving A1 mode is dominant as a result of the

efficiency of its excitation or its efficiency in modulating the dielectric function or both,

which we discuss later. For now, we simply describe the A1 mode as a “breathing mode,”

where the value of the helical radius u changes but the lattice constants a and c remain

fixed.

Tellurium is optically anisotropic due to its crystal structure. For electric fields

directed parallel (perpendicular) to the c axis, the material response is governed by the ex-

traordinary (ordinary) dielectric function εext(ω) (εord(ω)). As shown in Figure 4.2, εord(ω)

and εext(ω) display many of the same features. This similarity results from the fact that, at
1For a complete listing of the phonon modes of tellurium, see the german text Ref. [62].
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Figure 4.2: Linear optical properties of tellurium. The ordinary part of the dielectric tensor
is shown in black, the extraordinary part in gray. In both cases, solid lines show the real
part and dashed lines the imaginary part of the function.

optical frequencies, both dielectric functions represent the same set of electronic transitions

in the crystal, the same JDOS.2 However, as Figure 4.2 shows, the optical properties are

different along different directions in the crystal. These differences come from variations

in the value of the matrix elements that quantify the strength of those transitions as the

direction of the applied field changes the coupling A · p̂ (see Eq. 2.12).

Tellurium is a Group VI element and each atom in the crystal contributes six

valence electrons to form the bonds that hold the lattice intact. The density of valence

electrons in tellurium is 1.77 × 1023 cm−3.3 In experiments where the excitation strength

approaches the threshold for permanent damage of the crystal, the excited electron density

is equal to or greater than 1% of the valence electron density. Although this excitation

is not as strong as that which leads to disordering of a zincblende semiconductor,4 it still

breaks a significant number of bonds in the material. The effects of this bond-breaking are

described in the following sections.
2See Section 2.1.1.
3The density of valence electrons is calculated from the mass density of tellurium and the fact that each

tellurium atom contributes six valence electrons.
4See Section 2.2.3.
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4.2 Time-domain experiments

Coherent lattice vibrations in tellurium were first reported by a group at MIT

[63]. Using a single-color pump–probe reflectivity setup, oscillations in the reflectivity were

observed at the frequency of the symmetry-preserving A1 phonon mode and at no other

after excitation by a 60 fs pulse of fluence 2.5 J/m2. Figure 4.3(a) shows the oscillations

observed, and the inset shows the peak in the Fourier transform that corresponds to the

phonon mode excited (the arrows indicate the frequency of other known phonon modes that

were not observed). The researchers also observed oscillations in the reflectivity of Sb, Bi,

and Ti2O3, at the frequency of their respective A1 modes. Based on these observations, they

propose a generation mechanism called displacive excitation of coherent phonons (DECP).

According to DECP theory, the excitation of carriers by a femtosecond pulse establishes

new equilibrium positions before the lattice has significantly deformed, allowing all ions to

move in concert if the new equilibrium lattice configuration has the same symmetry as the

undisturbed lattice. This argument is very similar to the discussion of the dynamics of Si

in Section 2.2.3, although in DECP the new lattice potential is required to have a stable

minimum after excitation.

Further investigation of the coherent phonon dynamics in tellurium revealed a

variation in the A1 phonon frequency with pump intensity [65, 66, 67]. At excitations up

to 130 J/m2, the coherent phonon frequency is observed to decrease roughly linearly with

increasing excitation strength. The maximum change in reflectivity also increases with

excitation strength, linearly for small fluences, and asymptotically approaches a maximum

change of ∆R/R ≈ 0.1 under the highest excitations. Under increasing excitation, the

lifetime of the coherent phonon oscillations decreases. In addition to physical mechanisms

that “dephase” the lattice vibrations, such as phonon-phonon scattering, the researchers
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(a) (b)

Figure 4.3: (a) Transient reflectivity of tellurium at 2 eV and (inset) Fourier transform of
the signal, after Ref. [63]. (b) Transient isotropic and anisotropic reflectivity of tellurium
at 2 eV, after Ref. [64].

argue that the variation in excited electron density with depth in the sample, coupled with

the dependence of the phonon frequency on the excited electron density, leads to a decrease

in the lifetime of the reflectivity oscillations [67].5

Although the excitation of the symmetry-preserving A1 phonon mode in tellurium

dominates the optical response, the coherent excitation of other phonon modes has also been

observed [64, 68]. The observation of oscillations at 2.77 THz and 4.2 THz in the anisotropic

reflectivity,6 precisely the frequency of the two ETO phonon modes in tellurium, suggests

that other modes can be excited (see Figure 4.3(b)). Anisotropic reflectivity changes in

other geometries as well as the detection of THz emission from tellurium under short-pulse

excitation reveals that coherent ELO phonons can be excited as well. The researchers

recognized that the excitation of all possible Raman modes (not just the A1 mode) does

not fit the DECP scheme and suggested a mismatch in the diffusion rates of photoexcited
5Calculations show that the observed oscillations decay because, within a few cycles, lattice vibrations

near the surface and deep in the sample are out of phase.
6The anisotropic reflectivity change is given by, e.g. ∆Ra − ∆Rb, where a and b refer to crystal axes

perpendicular to the optic axis. Only phonon modes not symmetric in the ab plane can contribute to
∆Ra − ∆Rb.
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electrons and holes7 as a potential excitation mechanism [68].

4.3 Theories of coherent phonon excitation

Experimental observation often precedes theoretical understanding of physical phe-

nomena, and the phenomena of coherent phonon generation in solids is no exception. The

debate surrounding the physical mechanism responsible for excitation of coherent phonons

in absorbing solids centers on two main theories. One is an outgrowth of the phenomeno-

logical DECP, the other an extension of the theory describing coherent phonon generation

in transparent materials. We discuss both these theories below.

The DECP theory proposed by Zeiger et al. [63] involves a phonon amplitude Q(t)

that is driven by a displacement Q0(t) of its equilibrium lattice coordinate from its initial

value. The equation of motion describing the amplitude of the lattice vibration is that of a

harmonic oscillator

Q̈ + ΓQ̇ + Ω2Q = Ω2Q0(t) (4.1)

where Ω is the phonon frequency and Γ is a phenomenological damping constant. According

to the initial theory, Q0(t) is determined by quantities such as excited electron temperature

or density. Other researchers applied the ideas of DECP to YBa2Cu3O7 and claimed the

breaking of superconducting electron pairs was yet another means by which to drive coher-

ent lattice vibrations because the superconducting state has a different lattice configuration

than the non-superconducting state [69]. Regardless of the mechanism responsible for dis-

placing the equilibrium positions of the ions, the key feature of DECP is that the change

in equilibrium position provides an impulsive “kick” to the system.
7In highly excited materials, diffusion of a significant density of carriers can occur within a few hundred

femtoseconds. Unequal diffusion rates between electrons and holes can create an electric field due to this
charge separation, the so-called Dember field, giving an impulsive kick to polar phonon modes.
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A microscopic (read: quantum mechanical) description of DECP is presented by

Kuznetsov and Stanton [70]. The Hamiltonian they consider is

H =
∑
n,k

En(k)c†n,kcn,k +
∑
q

h̄Ωqb†qbq +
∑
n,k,q

Mn,k,q

(
bq + b†−q

)
c†n,kcn,k+q , (4.2)

where the “single-particle” energies of the electrons and phonons is accounted for in the

first and second terms using creation and annihilation operators cn,k,c†n,k, and b†q,bq, respec-

tively, and the interaction between electrons and phonons is described by the deformation

potential matrix elements Mn,k,q that give the change in energy of state |n,k〉 due to lattice

displacement q. In this system, the coherent phonon amplitude can be expressed in terms

of expectation values for the phonon creation and annihilation operators, Dq = 〈bq〉+〈b†−q〉,

and the microscopic equation of motion for Dq (analogous to the phenomenological equation

of motion Eq. (4.1)) is

D̈q + Ω2Dq = −2Ωq

∑
n,k

Mn,k,q〈c†n,kcn,k+q〉 . (4.3)

Comparing Eqs. (4.1) and (4.3), we see that the coherent lattice vibrations are driven by

changes in the total energy of the system due to electron occupation (i.e., deformation

coupling). Because linear absorption prepares the system in a diagonal state 〈c†n,kcn,k′〉 ∼

δk,k′ , only q = 0 modes can be driven coherently. This treatment of phonon excitation

shares many similarities with the description of molecular dynamics in Section 2.2.

Soon after coherent phonon modes other than the symmetry-preserving A1 mode

were observed, Merlin and coworkers developed a general theory of coherent phonon exci-

tation which they refer to as light excitation of coherent phonons (LECP) [71, 72]. Starting

with the same Hamiltonian as in Eq. (4.2), they performed a second-order pertubation

calculation of the driving term in Eq. (4.3), and discussed the electron-phonon coupling

in terms of the Raman tensor ∂χ(1)/∂Q. They go on to argue that LECP is related to

resonance Raman scattering, which is discussed in Refs. [73] and [74]. The important result
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is that the theory provides a framework in which coherent phonon generation can be un-

derstood for transparent materials8 as well as for opaque materials. The main differences

between this theory and DECP include the possibility of coherently exciting non-symmetric

phonon modes and the requirement of phase matching during the generation process.

The task of settling the question as to which excitation mechanism (DECP or

LECP) is the dominant one in the case of tellurium is not undertaken in this thesis. The

theoretical results in molecules (see Section 2.2) and the theoretical calculation discussed

in Section 4.5 support the DECP picture with respect to the A1 mode, but the LECP

framework is required to account for the excitation of non-symmetry preserving coherent

phonons. It is more enlightening to consider the similarities of the underlying physics in

each case. The Raman tensor simply represents changes in the linear susceptibility χ(1)

with lattice displacement, changes that result from pertubations of electronic energy levels

via the deformation potential, namely M . Neither Mn,k,q nor ∂χ(1)/∂Q exactly describes a

material: the former treats each excited electron separately while the latter represents the

first order approximation to the relationship between lattice displacement and change in

susceptibility. However, both quantities reflect the fact that electron occupation can exert

a force on the ions, causing lattice distortions that shift electron energy levels.

4.4 Experiments in coherent control

The objective of studies in optical control over coherent optical phonons is to

prepare a solid in a nonequilibrium state and investigate its evolution on femtosecond time

scales. The earliest experiments were performed on transparent materials (via the ISRS

generation mechanism) [75, 76]. Soon after the observation of coherent phonons in absorbing
8In transparent materials, this process is known as impulsive stimulated Raman scattering (ISRS), where

laser frequencies within the bandwidth of a single laser pulse generate coherent phonons through the same
χ

(3)
Raman process as described in Section 2.3.2.
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solids, attempts were made to control the amplitude of the oscillations.

Hase et al. [77] performed pump–probe reflectivity experiments on Bi films and

observed that the reflectivity oscillations due to coherent A1 phonons can be modified by a

second pump pulse. A time delay of nT between the two pump pulses, where n is an integer

and T is the phonon period, results in enhancement while a time delay of (n+1/2)T results

in cancellation. Although Hase et al. make no reference to the complimentary studies of

controlled dissociation performed on molecules, they discuss the process of coherent phonon

excitation in terms of DECP. Curiously, however, the process of control is described as the

sum of two sets of coherent phonons whose motion was initiated at different times and that

now interfere. The formulation described by Hase et al. is incorrect because they model the

observed traces as the sum of two single-pump reflectivity traces (R1(t)+R2(t)) rather than

as the reflectivity that derives from the sum of two oscillating susceptibilities (χ1(t)+χ2(t)).

In fact, the latter (correct) treatment results in measurable reflectivity oscillations even

when the “cancellation” criterion of equal amplitude, out-of-phase oscillations is satisfied.9

When the change in susceptibility is small enough, this model predicts that the reflectivity

approaches R1(t)+R2(t). Indeed, this was the case in Ref. [77], where experiments involved

low-energy pump pulses.10

DeCamp et al. [78] investigated the dynamics of single-crystal Bi for laser excita-

tion near the damage threshold. They observed that the oscillations can be cancelled near

the peak lattice displacement by a second pump pulse. Although they do not present as

comprehensive a study as that of Hase et al., it is interesting to note that the time delay of

the second pump that cancels the oscillation is not precisely (n + 1/2)T . The second pump

arrives 500 fs after the first, which is approximately 35 fs earlier than the (n + 1/2)T crite-
9This perhaps unexpected outcome is due to the photodiode detector measuring, essentially, |χtot(t)|2,

which involves cross-terms with oscillatory components
10In discussing the claims of Hase et al., we have ignored the issue of how two independent sets of coherent

vibrations are excited within a crystal.
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rion predicts. The authors provide no explanation for this result. In Chapter 6, we discuss

similar observations concerning coherent control of large-amplitude phonons in tellurium.

4.5 Density functional theory calculations

In Sections 4.2 and 4.3 we discuss the experiments that confirm the excitation

of coherent phonons by a femtosecond laser pulse and the theories of how the excitation

takes place. In this section, we present theoretical work that calculates how the lattice

changes that occur during the coherent phonon motion affect the band structure and optical

properties of tellurium, as a prelude to the discussion of our time-resolved dielectric function

measurements in Chapters 5 and 6. Currently, the primary theoretical tool for calculating

the electronic and optical properties of solids is density functional theory.

The objective of density functional theory (DFT) is to remedy the shortcomings

of the non-interacting electron picture of Eq. (2.10). Because solving a Hamiltonian that

includes exchange and correlation effects is an intractable many-body problem, the use of

electron density to somewhat ignore, yet still take account of, these effects was shown to

be a useful model of physical systems [79, 80]. In the framework of DFT, exchange and

correlation effects are calculated by computing interaction energies between single electron

wavefunctions and the overall electron density rather than computing a sum of these inter-

actions between every pair of electron wavefunctions. A DFT calculation is said to have

converged to a particular electron density n(r) when filling the band structure predicted by

n(r) returns the electron density n(r) itself.

Theoretical investigations of tellurium using DFT and other self-consistent calcula-

tions began in the 1970’s and continue today. Experimental observations of pressure-induced

semiconductor-to-metal transitions [81, 82] prompted theorists to model the pressure-induced
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structural and electronic changes in tellurium. More recently, lattice shifts as a result of

femtosecond pulse excitation have revived the subject among theorists, yielding a similar

set of calculations for a slightly different lattice distortion. In this section, we review the

relevant theoretical work and draw parallels between two generations of DFT calculations.

4.5.1 Tellurium under short pulse excitation

The majority of DFT calculations for tellurium under femtosecond pulse excitation

were performed by Tangney and Fahy [83, 84, 85].11 Their goal was to model the softening

of the A1 phonon mode, as observed by Hunsche et al. [65], and to investigate the generation

mechanisms of coherent phonons.

Figure 4.4 shows DFT calculations of the band structure of Te in the u = 0.2686

ground state lattice configuration. As shown, tellurium is semiconducting with an indirect

band gap between the valence band at H and the conduction band at A, although the size

of the indirect gap is nearly that of the smallest direct gap at H. The band gap is found to

be 0.253 eV and agrees fairly well with the experimentally determined value of 0.33 eV [83].

The main feature in the linear optical properties of tellurium (the resonance near 2 eV, as

shown in Figure 4.2) arises mostly from vertical transitions around the A point, evidenced

by the regions of parallel valence and conduction bands. Other self-consistent theoretical

calculations support this interpretation and go on to claim that the peak near 2 eV is due

to available transitions from the uppermost valence band to the lowermost conduction band

[86, 87].

As the size of the helical radius increases, tellurium goes through various electronic

transitions. An indirect band-crossing transition occurs at u = 0.286. Figure 4.5 shows the

semimetallic band structure calculated for u = 0.31, where the conduction band at A is
11Throughout this section, references are made to specific papers by Tangney and Fahy only in cases where

the information is not available in Ref. [85].



Chapter 4: Previous Work on Tellurium 66

e
n
e
rg

y
 (

e
V

)
Γ H Γ

12

10

8

6
A

0.25 eV

K

Figure 4.4: DFT band structure calculations of tellurium in the ground state lattice con-
figuration u = 0.2686 (after Ref. [85]).

significantly below the valence band at H. Comparing Figures 4.4 and 4.5, one can see that

the uppermost valence band remains roughly fixed around A and H, but that the conduction

band drops significantly around A. Thus, as the helical radius increases, one would expect

the resonance near 2 eV in ε(ω) to move toward lower photon energy, and the size of this

shift will be comparable to the decrease in the indirect band gap. Using DFT, Choly and

Kaxiras calculate the band structure and linear optical properties of tellurium for different

values of u, and find that the resonance in the dielectric tensor redshifts with increasing u

and that the main contribution to the resonance for all values of u arises from transitions

near the A point [88]. Tellurium becomes metallic at u = 0.33, where the first and second

nearest neighbor distances become equal and the crystal takes on higher symmetry.

It is important to note that the size of the helical radius is not determined by

the crystal symmetry — it takes a value that minimizes the free energy of the system, as

shown in Figure 4.6.12 Minima in the total energy indicate the value of the equilibrium

helical radius for various excited electron densities.13 The shift in equilibrium position is
12This fact reminds us that electrons and ions together determine the lattice configuration and band

structure.
13The shape of the minimum reveals a decrease in the (coherent) phonon frequency as the excited carrier

density increases because shallower minima correspond to smaller restoring forces when the ions move along
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Figure 4.5: DFT band structure calculations of tellurium for the lattice displacement u =
0.31 (after Ref. [83]).
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Figure 4.6: Calculations of the energy per unit cell (zero is chosen arbitrarily) as a function
of lattice displacement for different excitation densities. The position of the minimum at
u = 0.2686 moves toward larger values of u as the excitation density increases from 0%
(lowest curve) to 1.25% (highest curve) of valence electrons (after Ref. [85]).

due to the fact that, under photoexcition, carriers are removed from states that hold the

lattice near the minimum at u = 0.2686 and are placed in states that push the lattice

toward the minimum at u = 0.365. Figure 4.7 shows the calculated lattice shift and phonon

frequency as a function of carrier excitation. Equally large lattice displacements as a result

of photoexcitation (up to 10% change in a lattice parameter) have been observed in bismuth

[89].

this potential.
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Figure 4.7: (a) Equilibrium helical radius as a function of excitation density. The curve is
a guide to the eye. (b) Phonon frequency as a function of excitation density, showing both
initial large amplitude frequency (open squares) and small amplitude motion (filled circles).
A linear fit to the small amplitude motion is shown (after Ref. [85]).

4.5.2 Tellurium under pressure

DFT calculations of tellurium in the ground state and under 8 kbar hydrostatic

pressure were performed by Starkloff and Joannopoulos [90]. The calculated band structure

is shown in Figure 4.8. Discrepancies between these results and those of Tangney and Fahy

can be attributed to the sensitivity of DFT to the choice of pseudopotential and to two

decades of improvement in numerical techniques. Except for the fact that this calculation

predicts that tellurium has a direct band gap, the general shape of the bands is reproduced.

The researchers repeated the calculation for the lattice configuration as determined

experimentally under 8 kbar hydrostatic pressure. For this lattice distortion, the band

structure changes in such a way that the highest-valence-band-to-lowest-conduction-band

resonances shift by −0.0062 eV/kbar. In the Section 4.5.3, we discuss the similarities

between application of pressure and excitation of carriers for the response of tellurium.
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Figure 4.8: DFT band structure calculations of tellurium at ambient pressure (after
Ref. [90]).

4.5.3 Comparison of pressure and photoexcitation calculations

The link between pressure and photoexcitation in tellurium can be established

within the formalism of continuous phase transitions [91]. In the case of tellurium, the

phase transition of interest is that when the crystal attains higher symmetry at u = 0.33,

accompanied by a transition to a metallic state. The lattice displacements associated with

the application of pressure and with photoexcitation are different, but both can lead to the

same insulator-to-metal phase transition.14 The degree of proximity to such a phase transi-

tion is measured by a continuous variable called the order parameter η, and the transition

from a phase of lower symmetry to one of higher symmetry occurs when η vanishes. Thus,

the physical properties of tellurium, such as the photon energy of the main resonance, should

behave similarly under pressure and under photoexcitation when the lattice displacements

are recast in terms of the order parameter.

The order parameter for tellurium can be either R/r − 1 [92], where r (R) is the

first (second) nearest neighbor bond length, or simply 1 − 3u. The expression R/r − 1
14Under pressure, the helices of the crystal structure are squeezed closer to one another but the helical

radius does not change significantly. So, application of pressure leads to u = 0.33 by varying the spacing
between helices while photoexcitation induces a increase in the helical radius itself.
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has greater physical significance because the interplay between nearest and second nearest

neighbor bonding is believed to be a determining factor in the lattice dynamics of tellurium

[83]. In reality, both η = R/r− 1 = 0 and η = 1− 3u = 0 describe the same lattice, so it is

expected that both are good order parameters.

The final step in linking the resonance shift in tellurium under pressure and under

photoexcitation is to recast the response in terms of changes in the order parameter. For

the calculations of Tangney and Fahy, the resonance shift is taken to be the change in the

separation between the highest valence band and the lowest conduction band states at the A

point (0.89 eV) as the lattice is displaced from the ground state configuration to the u = 0.31

configuration [83]. The result of Starkloff and Joannopoulos, that the resonance shifts at

a rate of −0.0062 eV/kbar, is expressed in terms of the order parameter using the known

lattice displacements under pressure. For the order parameter η = 1− 3u, we find that the

photon energy of the main resonance in tellurium shifts by 4.7 eV/δη under pressure and

by 7.2 eV/δη under photoexcitation. Similarly, for η = R/r − 1, we calculate a shift of 2.9

eV/δη under pressure and 6.2 eV/δη under photoexcitation. The quantitative agreement

(within a factor of 2) between these independent numerical results in different physical

situations (using different pseudopotentials, no less) justifies the notion that very different

lattice distortions can be treated in one framework. In Chapter 5, we use these calculations

and the measured resonance shifts to estimate the size of the lattice displacement and the

coherent phonon amplitude in tellurium.

4.6 Summary

Previous experimental and theoretical work on tellurium indicate that the phonon

mode that is predominantly excited is the symmetry-preserving A1 mode. The DFT calcula-
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tions of Tangney and Fahy support the notion that the dynamics of tellurium are analogous

to the dynamics of excited molecules (discussed in Section 2.2). In the following chapters,

we discuss our measurements of the time-resolved dielectric tensor of tellurium, focusing

on how these optical measurements reveal the structural dynamics of tellurium and on the

degree to which the material dynamics can be controlled on a femtosecond time scale.



Chapter 5

Dynamics of Tellurium under

Single Pulse Excitation

In this chapter we present femtosecond time-resolved measurements of the dielec-

tric tensor of tellurium when femtosecond pump pulses excite coherent phonons. Experi-

mental details of how the measurement is performed are described in Chapter 3. The results

are discussed in relation to previous investigations of tellurium, which are summarized in

Chapter 4.

5.1 Dielectric tensor measurements

Experiments were performed in the multiple-shot mode described in Section 3.2.3,

where the sample is not translated between laser shots. At normal incidence, the elliptical

cross section of the pump beam upon reaching the sample measured 190 µm wide by 155

µm tall, but the width was increased by the angle of incidence of the pump. The cross

section of the probe spot was approximately 10 µm in diameter, but the width of the probe

spot was also increased due to the angle of incidence. For all data sets, the angle between

72
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the pump and probe beams was kept as small as possible (approximately 13◦) to minimize

the loss of temporal resolution that accompanies non-collinear pump–probe experiments.1

The two angles of incidence of the probe used for these experiments were 80.4◦ and 68.4◦.

Under irradiation by a 1-kHz train of 800-nm, 35-fs pulses at ∼ 67.5◦ angle of

incidence, the minimum pulse energy at which permanent damage to the sample is observed

is 3.4 µJ. It is believed that no cumulative effects occur from irradiation by a train of

pulses due to the 1-ms interval between pulses, although no measurements of the single-

shot damage threshold have been performed. Accounting for the reflectivity of the tellurium

sample and the 67.5◦ angle of incidence of the pump, the 3.4-µJ pulse energy corresponds to

a non-reflected threshold fluence of Fth = 21 J/m2. The error in the value of Fth is roughly

30%, owing to the lack of accuracy in measuring the pump spot size.

The excellent agreement between literature values [5] and measured values of the

dielectric tensor is shown in Figure 5.1, verifying that our experimental technique is sensitive

to each component of the dielectric tensor. The data shown were taken for a time delay

of −300 fs, where the probe arrives before the pump. However, with the entire pulse train

incident on the sample, the probe arrives about 1 ms after the prior pump pulse. Thus,

the agreement between measured and literature values of the dielectric tensor in Figure 5.1

is proof that no cumulative effects occur from multiple-pulse irradiation.

Single pulse excitation experiments were performed at pump fluences of 0.43Fth,

0.57Fth, 0.71Fth, and 0.85Fth. Despite the large error in the measurement of Fth, the

coefficients quoted here are accurate to a few percent. The measured dielectric tensor

data is shown in Figures 5.2 through 5.9. The data under different excitation conditions

share the following features: (1) cosine-like oscillations in both εord(ω) and εext(ω), (2)
1Because femtosecond pulses are akin to “photon pancakes” propagating through space, the angle between

pump and probe beams leads to a spatial variation of “time zero” across the probe spot. While typically
leading to a loss of temporal resolution, the technique of femtosecond microscopy overcomes this problem
by imaging the dynamics across the surface of the sample, as in, e.g., Ref. [57].
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Figure 5.1: Measured (circles) and literature (curves) values of the dielectric tensor of
tellurium.

an apparent shift of optical properties toward lower photon energies, and (3) increasing

oscillation amplitude with increasing fluence. In Section 5.2 we quantify the redshift of

optical properties by applying the Lorentz model to the data. In Section 5.3 we analyze the

frequency of the coherent phonons.
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Figure 5.2: Response of (a) Im[εord(ω)]
and (b) Re[εord(ω)] under 0.43Fth

excitation.

time delay (ps)

energy (eV)

Re[ε]

1.5

3.5

2

2.5

3

0
0.5

1
1.5

2
2.5

−0.5

−20

20

60

(b)

time delay (ps)

energy (eV)

Im[ε]

1.5

3.5

2

2.5

3

0
0.5

1
1.5

2
2.5

−0.5

0

40

80

(a)

Figure 5.3: Response of (a) Im[εext(ω)]
and (b) Re[εext(ω)] under 0.43Fth

excitation.
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Figure 5.4: Response of (a) Im[εord(ω)]
and (b) Re[εord(ω)] under 0.57Fth

excitation.
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Figure 5.5: Response of (a) Im[εext(ω)]
and (b) Re[εext(ω)] under 0.57Fth

excitation.
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Figure 5.6: Response of (a) Im[εord(ω)]
and (b) Re[εord(ω)] under 0.71Fth

excitation.
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Figure 5.7: Response of (a) Im[εext(ω)]
and (b) Re[εext(ω)] under 0.71Fth

excitation.
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Figure 5.8: Response of (a) Im[εord(ω)]
and (b) Re[εord(ω)] under 0.85Fth

excitation.
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Figure 5.9: Response of (a) Im[εext(ω)]
and (b) Re[εext(ω)] under 0.85Fth

excitation.
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5.2 Application of Lorentz model to dielectric tensor data

In order to establish a more quantitative picture of the material dynamics, we

apply the Lorentz model to the dielectric tensor data. As discussed in Section 2.1.2, the

Lorentz model is useful for describing the general features of a broad resonance in a solid.

Thus, we model the data using Eqs. (2.21) and (2.22), and include a real additive constant

c to account for the contribution of resonances outside the spectral range of the probe, as

discussed in Sections 2.1.2 and 2.1.3. We expect there to be a difference in the parameters

of the fit to εord(ω) and εext(ω) due to the differences in εord(ω) and εext(ω) themselves; the

variation in the matrix elements of the dipole interaction that couple the same set of states

results in slightly different optical properties.2

5.2.1 Fit method

The fitting procedure is designed to minimize the metric

3.3∑
h̄ωi=1.65

(Re[εLorentz(ωi)] + c− Re[ε(ωi)])
2 + (Im[εLorentz(ωi)]− Im[ε(ωi)])

2 , (5.1)

which is similar to the common least-squares metric, but extended to complex-valued func-

tions. For the data at each time delay, the initial values of the additive constant c as well

as the parameters f , ω0, and Γ of εLorentz(ω) (see Eqs. (2.21) and (2.22)) are taken to be

those that result from fitting literature values of the dielectric function, as discussed below.

The fitting routine uses the Levenberg–Marquardt method [44] to search parameter space

for a minimum in the sum-of-squares metric.

The ability of the Lorentz model to describe the optical properties of tellurium is

evidenced in Figure 5.10, where both the ordinary and extraordinary dielectric functions are

well-reproduced. The parameters of the fits are f = 110, h̄ω0 = 2.33 eV, h̄Γ = 1.34 eV, and
2See Section 2.1.1.
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Figure 5.10: Measured values (circles) and Lorentz model fits (curves) of the dielectric
tensor of tellurium. See text for details of the fit.

c = 7.34 for the ordinary part and f = 161, h̄ω0 = 2.11 eV, h̄Γ = 1.41 eV, and c = 5.77 for

the extraordinary part. Fits to literature values of εord(ω) using a Lorentz model with two

resonances (see Figure 2.2(b)) indicate that approximately half of the real additive constant

c is due to the material resonance near 9 eV and that the remaining portion is due to the

presence of resonances at greater than 12 eV.

Before discussing specific features of the dynamics, a few general remarks are in

order. All four fit parameters deviate from their pre-excitation values for positive time

delays (Figures 5.12 though 5.19), although for the data at certain time delays, the value of

a fit parameter never deviates from the initial guess during the fitting procedure. Continuity

in the minimized value of the sum-of-squares metric (Eq. (5.1)) around these time delays

indicates that the fit procedure is robust and that this lack of deviation from initial values

is an artifact of the fit precision and iteration limits. Of critical importance is that the

physically significant parameter, the resonance energy, is insensitive to the parameters that

display these effects. Figure 5.11 shows the change in the fit value of the resonance energy for

the 0.85Fth-excitation εord(ω) data (Figure 5.8) when the fit is performed with the oscillator

strength f and the additive constant c held fixed at 110 and 7.34, respectively, instead of
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Figure 5.11: Change in fit values of the resonance energy when the oscillator strength and
additive constant are held fixed at their literature values (εord(ω), 0.85Fth excitation).

allowing all parameters to vary. The discrepancy is less than 1% for all time delays, and

similar results are found for other data sets, which indicates that the resonance energy is

independent of the other parameters of the fit.

5.2.2 Fit results

Figures 5.12 though 5.19 show the transient behavior of the best-fit parameters of

the Lorentz model when applied to the data in Figures 5.2 through 5.9. The four plots in

each Figure display (a) the resonance energy h̄ω0, (b) the linewidth h̄Γ, (c) the oscillator

strength f , and (d) the additive constant c.
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Figure 5.12: Transient behavior of parameters in Lorentz model: εord(ω), 0.43Fth excitation.
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Figure 5.13: Transient behavior of parameters in Lorentz model: εext(ω), 0.43Fth excitation.
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Figure 5.14: Transient behavior of parameters in Lorentz model: εord(ω), 0.57Fth excitation.
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Figure 5.15: Transient behavior of parameters in Lorentz model: εext(ω), 0.57Fth excitation.
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Figure 5.16: Transient behavior of parameters in Lorentz model: εord(ω), 0.71Fth excitation.
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Figure 5.17: Transient behavior of parameters in Lorentz model: εext(ω), 0.71Fth excitation.
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Figure 5.18: Transient behavior of parameters in Lorentz model: εord(ω), 0.85Fth excitation.
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Figure 5.19: Transient behavior of parameters in Lorentz model: εext(ω), 0.85Fth excitation.
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5.2.3 Discussion of fit results

The changes in the optical properties of tellurium after photoexcitation is directly

related to the changes in the band structure, as discussed in Section 2.1.1. The Lorentz

model allows us to determine the ways in which the band structure changes during the

photoinitiated lattice dynamics. The data clearly show a shift of the main resonance toward

lower photon energies and the shift increases with the excitation strength.3 This shift

indicates that the gap between valence and conduction bands decreases for those states that

constitute this resonance. The linewidth of the resonance and the oscillator strength increase

slightly after photoexcitation, although their behavior is not consistent across excitation

strengths. Changes in the additive constant c show no trend and statistical tests of the fit

question the significance of the variation of this parameter.4

The qualitative aspects of the dynamics agree well with theoretical calculations

of the band structure changes that result from a lattice displacement along the A1 phonon

mode. As discussed in Section 4.5.1, the energy separation between valence and conduction

band states around the A point in k space decreases as the helical radius increases. Thus, the

consistent redshift of the resonance in our data shows that the helical radius increases upon

photoexcitation, in contrast to previous work that suggests a decrease of the helical radius

[66]. Comparing Figures 4.4 and 4.5, one observes that the size of the region over which

the bands remain parallel is roughly the same after the lattice is significantly displaced,

which supports the conclusion that the oscillator strength f does not significantly change.

Changes in the linewidth h̄Γ are difficult to predict based on the calculated band structures

simply because it is difficult to judge the degree of “parallel-ness” of bands near the A point.

Many researchers have suggested that the material response is composed of two
3See, also, Figure 6.17.
4The F test [93] for an additional fit parameter supports the inclusion of c in the model, but questions

the inclusion of another parameter that represents the deviation of c from its pre-excitation value.
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parts; an oscillatory signal produced by coherent phonons and a “background signal” due to

a purely electronic effect, such as a Drude contribution from free electrons or Pauli blocking.

Our dielectric tensor measurements indicate that the lattice dynamics are responsible for all

components of the signal. Many-body effects, such as Pauli blocking, are typically localized

to the pump wavelength, so the existence of a “background signal” at all wavelengths ques-

tions the significance of many-body electronic effects. The Drude contribution to Im[ε(ω)] is

positive for all wavelengths and is less than 0.5 at the excited electron densities attained in

our experiments, whereas Im[εord(ω)] and Im[εext(ω)] increase for some photon energies and

decrease for others. Because the dielectric tensor data is well-fit by the Lorentz model and

does not indicate the presence of free electron effects, we conclude that the photoinitiated

lattice dynamics are entirely responsible for the observed behavior.5

We can estimate the size of the overall lattice displacement and the size of the

coherent phonon amplitude from the observed resonance shifts using calculations of the

redshift of resonances in tellurium due to photoexcitation [83, 84, 85] and due to the appli-

cation of pressure [90]. We assume that photoexcitation leads to a lattice shift along the

A1 mode only, which allows us to immediately apply the theoretical results of Tangney and

Fahy for tellurium under photoexcitation. A linear fit to the change in the energy gap at

the A point between the highest valence and the lowest conduction band as a function of

the normalized helical radius estimates the resonance to change as −21.5 eV/δu. Thus, the

maximum redshift of roughly −0.3 eV, observed under 0.85Fth excitation, corresponds to

an increase in the helical radius of 0.006 nm, and the maximum peak-to-trough resonance

variation of roughly 0.17 eV corresponds to a coherent phonon amplitude of 0.003 nm.

The band structure calculations of Starkloff and Joannopoulos must be interpreted through
5Ruling out electronic effects as a major contributor to the dynamics is made possible by measuring the

dielectric tensor over a wide spectral range. Single-color reflectivity transients cannot distinguish between
the shifting of a resonance and a Drude contribution, and only in rare cases can they be used to make
definitive statements about the material dynamics.
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the use of an order parameter6 because the lattice shifts of tellurium under pressure are

not confined to the A1 mode. The order parameter η = 1 − 3u predicts a maximum lat-

tice displacement and coherent phonon amplitude of 0.009 nm and 0.005 nm, respectively.

Similarly, the order parameter η = R/r − 1 predicts a maximum lattice displacement and

coherent phonon amplitude of 0.013 nm and 0.007 nm, respectively. The estimated mag-

nitude of the lattice displacement in tellurium is similar to the ∼ 0.02 nm displacement of

the bismuth lattice observed with ultrashort x-ray pulses [89].

5.3 Analysis of coherent phonon frequencies

A Fourier analysis of the oscillations in the optical properties of tellurium is useful

for understanding the underlying lattice dynamics. By performing Fourier transforms of

the entire oscillatory reflectivity signal, researchers observe that the A1 phonon frequency

decreases with increasing excitation [65, 78, 94], suggesting that the shape of the parabolic

(harmonic) potential on which the ions move changes upon photoexcitation or that the large

amplitude phonons experience the anharmonicity of the original potential to a greater extent

as the excitation increases in strength. The former phenomenon is referred to as “softening”

of the phonon mode, the latter as simply anharmonicity. Theoretical calculations, such as

those of Tangney and Fahy [84], predict a decrease in the coherent phonon frequency based

on softening alone, while experimental investigations of bismuth suggest that anharmonicity

and softening are necessary to explain the dynamics [94]. It is likely the case that both effects

contribute to the dynamics of tellurium.

Because a significant amount of experimental work has been done on coherent

phonon frequencies in tellurium, most notably by Hunsche et al. [65, 66, 67], we devote

little space to the aspects of our results that simply verify previous observations. In Section
6See Section 4.5.3.
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5.3.1 we present results from a Fourier analysis that show a decrease of the coherent phonon

frequency with increasing excitation strength and that suggest that nonlinear effects play

a role in the absorption of the pump pulse. In Section 5.3.2 we discuss how the phonon

frequency changes on a sub-picosecond time scale.

5.3.1 Excitation-strength dependence of the coherent phonon frequency

Fast-Fourier transforms (FFTs) of the reflectivity, the dielectric tensor, and the

resonance energy were performed over the ∼ 3 ps range of the data. The same peak fre-

quency was observed in the FFT spectrum of the reflectivity transient for all photon energies

of the probe, and the same frequency was observed for the reflectivity, dielectric tensor, and

resonance energy. We concentrate on the resonance energy because its dependence on the

lattice displacement is more linear than that of the reflectivity or dielectric constant.

Figure 5.20 shows the FFT spectrum of the resonance energy of εord(ω) under

0.57Fth excitation.7 The peak in the FFT spectrum near 3.2 THz is due to the presence

of coherent phonons. The low-frequency portion of the spectrum arises from the overall

displacement of the resonance energy from its initial value. The FFT spectrum of the

oscillatory part of the resonance energy (background displacement removed8) lacks these

low-frequency contributions and the value of the peak frequency remains approximately the

same.

Figure 5.21(a) shows the dependence of the coherent phonon frequency on the

strength of the excitation,9 where the data from εord(ω) and εext(ω) are combined. The

data show a decrease in the coherent phonon frequency upon increasing excitation. As
7Data shown in Figure 5.14(a).
8The background signal was determined by fitting the data to an over-damped oscillator, which tracks

the motion of the equilibrium lattice position. The oscillatory part of the resonance energy dynamics is the
difference between the data and this fit.

9The incident pulse energy of the 80.4◦ reflectivity data is used in Figure 5.21(a), although the pulse
energy of the lower-angle data set shows the same linear trend.
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Figure 5.20: FFT spectrum of the resonance energy in Figure 5.14(a) (solid line) and the
FFT analysis of the oscillatory component only (dashed line).
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Figure 5.21: (a) Dependence of the coherent phonon frequency on pump energy, as observed
in oscillations of the resonance energy of εord(ω) and εext(ω). (b) The ordinary and extraor-
dinary data, plotted as a function of the excited electron density from linear absorption, do
not agree.

discussed in a previous publication [95], the observed −0.0025 THz per J/m2 rate of change

of the phonon frequency with incident fluence agrees quantitatively with the results of

Hunsche et al. [65].

Unexpectedly, the frequency of oscillation seen in the εord(ω) and εext(ω) data do

not display the same trend when plotted as a function of excited electron density based on

linear absorption, as shown in Figure 5.21(b). Tangney and Fahy showed that the excited
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electron density determines the frequency of the A1 phonon mode.10 It is expected that

any lattice vibrations will manifest themselves as similar oscillations in εord(ω) and εext(ω).

Thus, we expect the frequency of oscillation observed in the two sets of data to lie on the

same line. It is clear from Figure 5.21(b) that they do not.

The reason why the same nominal excitation, say 0.57Fth, results in different

excited electron densities when probing εord(ω) or εext(ω) is due to the skin depth of the

sample in the geometry of each measurement. The excited electron density N is given by

N = Fα

(
1 electron
1 photon

)
(5.2)

where F is the fluence in photons/m2 and α = 4πκ/λ is the skin depth of the material.

As described in Section 3.1.2, the polarization of the pump is crossed to that of the probe.

Thus, when the setup is designed to measure εord(ω), the pump reflectivity and absorption is

determined by the extraordinary optical properties. Similarly, when the setup is arranged to

measure εext(ω), the pump sees the ordinary optical properties. Accounting for the difference

in reflectivity of the pump between the two cases allowed us to perform measurements of

εord(ω) and εext(ω) for the same non-reflected pump fluence. Only after the experiment

was complete did we discover that the same non-reflected fluence in each case does not

correspond to the same excited electron density,11 due to the factor of ∼ 3 difference in the

absorption constant κ between ordinary and extraordinary optical properties.

Does the apparent mismatch in excitation strength invalidate the dielectric ten-

sor measurements? While it is true that the method for determining εext(ω) depends on

previous measurements of εord(ω) for the same excitation, the angles of incidence used for

the measurements of εext(ω) make the numerical inversion fairly insensitive to εord(ω).12

10See Section 4.5.1, specifically Figures 4.6 and 4.7(b).
11During the course of the experiment, we monitored the oscillation frequency of the reflectivity observed

when measuring εord(ω) and εext(ω) and found that they agreed fairly well for the same non-reflected fluence.
12The numerical inversion routine was performed matching the 0.85Fth “extraordinary reflectivities” with
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Thus, the measurements of εext(ω) are valid, though they may not correspond to the same

excitation density as εord(ω).

The mismatch between the phonon frequencies for εord(ω) and εext(ω) in Figure

5.21(b) indicates that linear absorption is not the only process by which the pump is ab-

sorbed. Tangney and Fahy predict that the phonon frequency depends linearly on the

excitation density, however they do not specify the means by which the electrons are ex-

cited. While linear reflectivity and linear absorption is most often used by researchers to

estimate the photoexcited electron density in absorbing solids, nonlinear effects are known

to be important when intense femtosecond pulses interact with solids. The clear discrep-

ancy in the observed phonon frequencies when plotted as a function of excitation density

based on linear absorption indicate that the nonlinear optical properties of tellurium play

a significant role in the excitation process.

To verify that nonlinear effects are important in our experiments, we estimate the

number of electrons available for linear absorption by the pump pulse. The importance of

establishing the number of electrons available for linear absorption lies in comparing it to

the excited electron density predicted by linear absorption of the entire pump pulse. If the

number of electrons available for excitation is on the order of the number of photons to be

absorbed, then both saturation of linear absorption and nonlinear effects become important.

Inverting Eq. (2.12) and using Eq. (2.13), we estimate the joint density of states to be

JDOS(ω) ∼ ω2Im[ε(ω)] , (5.3)

where the matrix elements of the dipole interaction in Eq. (2.12) are taken to be independent

of k. Between 0.3 eV and 4 eV, the JDOS accounts for all transitions between the three

uppermost valence bands and the three lowermost conduction bands in tellurium (see Figure

the 0.43Fth-values of εord(ω), which correspond to similar excited electron densities. The difference between
these extracted values of εext(ω) and the data shown in Figure 5.9 is significantly less than the error in the
numerical inversion itself.
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4.4). Thus, the fraction F of these transitions available to a 35-fs, 800-nm laser pulse13 is

F =

∫ 1.58
1.52 d(h̄ω) JDOS(h̄ω)∫ 4
0.3 d(h̄ω) JDOS(h̄ω)

. (5.4)

Finally, to convert from transitions to electrons, we notice that each electron in the valence

band is likely to have only one transition (if any) within the spectral range of the pump,

however all three of its transitions are accounted for in the denominator of Eq. (5.4). This

overcounting is remedied by multiplying the above expression by 3 to obtain the fraction

of electrons excited from the uppermost valence bands to the lowermost conduction bands.

Because the three uppermost valence bands contain 1/3 of all valence electrons, the factors

of 3 and 1/3 cancel, so Eq. (5.4) also gives the fraction of all valence electrons available for

linear absorption of the pump.

From literature values of εord(ω) and εext(ω), we calculate the fraction of valence

electrons available for linear absorption when the pump is polarized along the optic axis

(Fext) and when the pump polarization lies perpendicular to the optic axis (Ford). Following

the above discussion, the pump would see Fext electrons available for linear absorption for

the experimental situation of measuring εord(ω), and Ford when measuring εext(ω). We find

Fext = 0.012 and Ford = 0.005. Thus, the pump conditions in our experiment are such

that linear absorption of the entire pump pulse requires as many or more electrons than we

estimate to be available. In these cases, saturation of linear absorption will occur and it is

likely that two-photon absorption of electrons would become important.

In addition to indicating that saturation of linear absorption is an important con-

sideration in our experiments, the above calculation offers a remedy to the discrepancy

shown in Figure 5.21(b). The measurements of εord(ω) were performed for stronger excita-

tions relative to the saturation level Fext than the measurements of εext(ω) relative to Ford.
13The FWHM of the spectrum of this pulse ranges from 1.52 eV to 1.58 eV. For this calculation, we ignore

the gaussian shape when counting transitions and simply use a top hat function.
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While saturation of linear absorption will shift both data sets toward lower excited electron

densities, the ordinary data will be shifted to a greater extent, bringing the ordinary and

extraordinary data closer to falling on the same line.

5.3.2 Time- and frequency-resolved phonon dynamics

The question of whether anharmonicity or softening properly describes the change

in phonon frequency upon excitation can be addressed using a short term Fourier transform

(STFT). A STFT consists of performing a Fourier transform of the measured signal S(t)

convolved with a gaussian pulse G(t, τ) centered around many time delays τ . The peak

in the Fourier transform gives the local frequency Ω(τ) of the signal S, which is tracked

over the entire signal to yield the time-varying local frequency. Reflectivity-based studies

of coherent phonons in Bi reveal that the phonon frequency is initially decreased by up

to 10%, but then exponentially decays toward the pre-excitation phonon frequency with

time constant of about 2 ps [94]. Hase et al. argue that the linear relationship between

the local frequency Ω(τ) and the squared amplitude of the oscillations in S(t) at τ , which

is expected for an anharmonic potential, supports anharmonicity as the dominant source

of the change in coherent phonon frequency [94]. Softening is observed as the excitation

strength is increased, but the effects are significantly smaller than the effects of amplitude

variation.

STFT traces of the dynamics of the resonance energy are shown in Figure 5.22(a)

for the ordinary data and in Figure 5.23(a) for the extraordinary data. For this analysis, the

FWHM of the windowing function G(t, τ) was chosen to be 300 fs.14 Generally speaking, the

traces in both figures show a slow return of the phonon frequency toward the ground state
14We found that a 300 fs width, approximately that of the phonon period, was neither too long to see

changes in the frequency over the range of our data nor too short to be overly susceptible to the oscillations
in the data itself.
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Figure 5.22: Local frequency of the resonance energy of εord(ω) calculated via the STFT
technique (a) for the entire data set and (b) for only the oscillatory part of the data.
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technique (a) for the entire data set and (b) for only the oscillatory part of the data.

value (3.6 THz), while traces corresponding to difference pump fluences are significantly

shifted. The sharp trend toward very low frequency at early time delays is an artifact of

using data that includes the background signal. Removing this background to analyze only

the oscillatory part yields the data of Figures 5.22(b) and 5.23(b), which do not display this

trend.

Figures 5.22(b) and 5.23(b) show that the local frequency Ω(τ) does not signif-

icantly change over the observed range of our data compared to the change in phonon

frequency with excitation strength. The amplitude of the oscillations in the resonance en-

ergy are typically reduced by half within 2 ps (see part (a) of Figures 5.12 though 5.19),
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however the shift of the phonon frequency is typically small over this same time period.

This suggests that, in the case of tellurium, anharmonicity is less important than softening

in determining the coherent phonon frequency.

5.4 Summary

The ultrafast changes in the main resonance in tellurium provide a means to in-

vestigate the lattice and band structure dynamics that result from excitation of coherent

phonons. Analysis of the data using the Lorentz model yields a quantitative measure of

the resonance shift and an estimate of the size of the lattice distortion. The dependence

of phonon frequency on excitation strength reveals that linear and nonlinear interactions

between the pump and the material are important. Finally, the transient behavior of the

phonon frequency indicates that mode softening is more important than anharmonicity in

photoexcited tellurium, in agreement with the theoretical predictions of Tangney and Fahy

[84].



Chapter 6

Dynamics of Tellurium under

Double Pulse Excitation

As an extension of the experiments described in Chapter 5, we investigated the

degree to which the lattice dynamics of tellurium can be controlled via double pulse ex-

citation. The experiment was carried out in the same manner as described in Chapter 3

and Section 5.1, with the addition of a second colinear pump pulse. The data presented in

this Chapter shows that enhancement and cancellation of coherent phonons is achievable

under near-damage threshold excitation. The excitation conditions under which cancella-

tion is achieved is contrasted with previous low-excitation coherent control experiments on

bismuth and reveal a departure from the expected behavior.

6.1 Dielectric tensor measurements

The key experimental challenge of performing experiments in coherent control, and

the primary difference from the single pulse excitation experiments, lies in controlling the

time delay between exciting pulses. Precise control of the time delay between pump pulses

97
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is required to achieve cancellation of coherent phonons. The common autocorrelation tech-

nique1 proved too difficult to employ: “time zero” between the pulses could be established

in a separate autocorrelator, but slight angles between the beams due to daily alignment of

the setup caused “time zero on the sample” to occur for a different (random) delay stage

position. To establish “time zero on the sample,” the two pump pulses were attenuated to

the same energy and each was used separately to excite tellurium as the transient reflec-

tivity was recorded. The time shift between the two measured responses yielded the actual

time delay between pump pulses. Using this technique, the error in establishing “time zero

on the sample” between the two 35 fs pump pulses is ±7 fs.

Double pulse excitation experiments to enhance and cancel the coherent vibrations

were performed under a variety of pump conditions, as summarized in Table 6.1. Measure-

ments of εord(ω) and εext(ω) are shown in Figures 6.1 through 6.8. In the same manner

as the single pulse excitation data is analyzed in Chapter 5, the Lorentz model is used to

describe the changes in the dielectric tensor. The results of the fitting procedure are shown

in Figures 6.9 through 6.16. The results are discussed in Section 6.2.

1See Section 3.1.1.
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1st pulse 2nd pulse εord(ω) data

energy (µJ) fluence (Fth) energy (µJ) fluence (Fth) delay (fs) effect

1.48 0.43 1.14 0.35 127 cancel

1.96 0.57 1.56 0.46 133 cancel

2.43 0.71 1.23 0.43 467 cancel

1.48 0.43 1.14 0.35 267 enhance

1st pulse 2nd pulse εext(ω) data

energy (µJ) fluence (Fth) energy (µJ) fluence (Fth) delay (fs) effect

1.19 0.43 0.93 0.33 127 cancel

1.57 0.57 1.48 0.45 133 cancel

1.96 0.71 1.06 0.34 467 cancel

1.19 0.43 0.93 0.33 267 enhance

Table 6.1: Summary of pump conditions for control of coherent phonons. Cancellation near
the first maximum is observed in those data sets with a ∼ 130 fs delay between pulses.
Cancellation near the second maximum is observed in those data sets with a 467 fs delay.
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Figure 6.1: Response of (a) Im[εord(ω)]
and (b) Re[εord(ω)] under 0.43Fth–
0.35Fth excitation with a time delay of
127 fs between pulses.
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Figure 6.2: Response of (a) Im[εext(ω)]
and (b) Re[εext(ω)] under under 0.43Fth–
0.33Fth excitation with a time delay of
127 fs between pulses.
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Figure 6.3: Response of (a) Im[εord(ω)]
and (b) Re[εord(ω)] under 0.57Fth–
0.46Fth excitation with a time delay of
133 fs between pulses.
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Figure 6.4: Response of (a) Im[εext(ω)]
and (b) Re[εext(ω)] under 0.57Fth–
0.45Fth excitation with a time delay of
133 fs between pulses.
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Figure 6.5: Response of (a) Im[εord(ω)]
and (b) Re[εord(ω)] under 0.71Fth–
0.43Fth excitation with a time delay of
467 fs between pulses.
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Figure 6.6: Response of (a) Im[εext(ω)]
and (b) Re[εext(ω)] under 0.71Fth–
0.34Fth excitation with a time delay of
467 fs between pulses.
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Figure 6.7: Response of (a) Im[εord(ω)]
and (b) Re[εord(ω)] under 0.43Fth–
0.35Fth excitation with a time delay of
267 fs between pulses.
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Figure 6.8: Response of (a) Im[εext(ω)]
and (b) Re[εext(ω)] under 0.43Fth–
0.33Fth excitation with a time delay of
267 fs between pulses.
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Figure 6.9: Transient behavior of parameters in Lorentz model: εord(ω), 0.43Fth–0.35Fth,
oscillations cancelled.
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Figure 6.10: Transient behavior of parameters in Lorentz model: εext(ω), 0.43Fth–0.33Fth,
oscillations cancelled.
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Figure 6.11: Transient behavior of parameters in Lorentz model: εord(ω), 0.57Fth–0.46Fth,
oscillations cancelled.
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Figure 6.12: Transient behavior of parameters in Lorentz model: εext(ω), 0.57Fth–0.45Fth,
oscillations cancelled.
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Figure 6.13: Transient behavior of parameters in Lorentz model: εord(ω), 0.71Fth–0.43Fth,
oscillations cancelled near 2nd maximum.
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Figure 6.14: Transient behavior of parameters in Lorentz model: εext(ω), 0.71Fth–0.34Fth,
oscillations cancelled near 2nd maximum.
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Figure 6.15: Transient behavior of parameters in Lorentz model: εord(ω), 0.43Fth–0.35Fth,
oscillations enhanced.
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Figure 6.16: Transient behavior of parameters in Lorentz model: εext(ω), 0.43Fth–0.33Fth,
oscillations enhanced.
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6.2 Discussion of double pulse excitation results

Discussion of the data and Lorentz model analysis is separated into three sections.

In Section 6.2.1, the measurements of the dielectric tensor under single and double pulse

excitation are compared. In Section 6.2.2, we discuss observed trends in the shift of the

resonance in εord(ω) and εext(ω). Finally, in Section 6.2.3, we discuss features of the dy-

namics under double pulse excitation that show that the process of coherent control is more

complicated at high levels of photoexcitation than the low-excitation experiments of other

workers indicate.

6.2.1 Qualitative aspects of coherent control dynamics

The variety of phenomena observed under double pulse excitation, as shown in

Figures 6.1 through 6.8, are proof that control of large amplitude coherent phonons can

be achieved in tellurium. As mentioned above, achieving phonon cancellation is exquisitely

sensitive to the arrival time and fluence of the second pump pulse relative to the first. We

observe that only a pulse of a certain delay and fluence cancels the oscillations near the first

maxima and a different pulse must be used to cancel the oscillations near each maxima.

Thus, we believe that the fluence of the first pump pulse uniquely specifies a set of arrival

times and fluences of the second pump pulse that cancels the observed oscillations near the

local maxima. If the time delay or fluence of the second pulse is not chosen correctly, then

oscillations ensue. The data in Figures 6.7 and 6.8 are the most extreme example of such,

where the chosen time delay between pump pulses increased the coherent phonon amplitude

rather than causing it to vanish. Hase et al. observed similar dynamics in low excitation

strength experiments on bismuth films [77], as discussed in Section 4.4.
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6.2.2 Excitation-strength dependence of resonance redshift

Similar to the discussion of phonon frequencies in Section 5.3.1, we expect that the

shift of the resonance measured in the ordinary and extraordinary dielectric functions would

agree because the underlying lattice configuration determines the JDOS (or, equivalently,

the shape of the band structure), which affects all parts of the dielectric tensor. Theoretical

calculations show that the excitation of electrons causes a lattice displacement such that

the conduction and valence bands move closer together, resulting in a redshift of the optical

properties. We consistently observe this redshift under both single pulse excitation (see

Figures 5.12 through 5.19) and double pulse excitation (see Figures 6.9 through 6.16).

Moreover, we observe an increasing redshift of the resonance of tellurium at the equilibrium

lattice configuration2 with excitation strength,3 as shown in Figure 6.17(a). However, the

dependence of the resonance shifts observed in εord(ω) and εext(ω) on excited electron density

based on linear absorption is not the same, as shown in Figure 6.17(b). The divergence of the

two data sets in Figure 6.17(b), like the divergence of the data in Figure 5.21(b), is evidence

that nonlinear effects play an important role in the interaction between the intense pump

pulses and the sample.

It is interesting to note that the maximum change in the resonance energy ap-

proaches the size of the band gap as the excitation strength approaches the threshold for

permanent damage.4 As discussed in Section 4.5.1, theoretical calculations indicate that

the size of the resonance redshift is approximately equal to the decrease in the indirect band
2The position of resonance of the equilibrium lattice configuration is found from the fit values of the

Lorentz model in the following way. For single pulse excitations, the average of the first maximum and
the first minimum is taken. For double pulse excitations that cancel the oscillations, the value maximally
displaced from the initial resonance energy is taken.

3The pump pulse energies given are those of the reflectivity data taken at 80.4◦, although the trend is
the same when the pump pulse energy of the data set at 68.4◦ is considered.

4Under single pulse excitation, damage was observed for an incidence pulse energy of 3.4 µJ. Under
double pulse excitation, the sum of the energies of the two pulses could exceed 3.4 µJ without leading to
permanent damage.
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Figure 6.17: Dependence of the change in equilibrium resonance energy under single and
double pulse excitation on (a) total incident pump energy and (b) total excited electron
density.

gap for a given lattice displacement along the A1 mode. The fact that the onset of damage

and the indirect band-crossing seem to coincide suggests that the mechanism for damage is

due in part to the transfer of electrons from the top of the valence band at H to the bottom

of the conduction band at A via electron-phonon scattering. If true, this further implies

that the scattering process is fast, on the order of 100 fs or less.5

6.2.3 Details of coherent control of large lattice displacements

To gain a better understanding of the coherent control dynamics, we compare the

changes in the resonance energy under various single and double pulse excitation conditions,

as shown in Figure 6.18. In all parts of the figure, pump pulses “1” and “2” (and “3”) indi-

cate their time of arrival and their 35 fs pulse duration is drawn to scale. In Figure 6.18(a),

the variation in the resonance energy in εord(ω) is shown under single pulse excitation at

0.57Fth and under double pulse excitation at 0.57Fth and 0.46Fth with a pulse separation

of 133 fs. The data show that this double pulse combination leads to cancellation of the
5To verify that electron-phonon scattering from valence to conduction band leads to permanent damage,

one could measure the damage threshold as a function of the pulse duration. Long and short pulses of
equal energy excite the same density of electrons, leading to the same displaced equilibrium position, but
long pulses excite smaller amplitude coherent phonons than short pulses. If the damage threshold does not
depend on pulse duration, then the photoexcitated carrier density is the important parameter.



Chapter 6: Dynamics of Tellurium under Double Pulse Excitation 111

time delay (ps)

∆
E

re
s
 (

e
V

)

−0.5 1 2.50.5

0.0

0.0

−0.1

−0.3
1.5

−0.1

20

0.1

−0.1

−0.2

0.0

−0.3

−0.2

−0.2

(c)

1 2 3

1+2

1+3

1

(b)

1 2 3

1+2

1+3

1

(a)

1 2

1+2

1

Figure 6.18: Transient behavior of the main resonance energy determined by Lorentz fits
to the data. (a) Pump pulses 1 and 2 lead to cancellation of the oscillations at the first
peak. By varying the time delay between the two pump pulses, enhancement (b, “1+3”) or
cancellation at later peaks (c, “1+3”) can be achieved. See text for further details.

coherent phonons. The cancellation of oscillations in the εext(ω) data is shown in parts (b)

and (c) under different excitation conditions. Figure 6.18(b) shows single pulse oscillations,

double pulse cancellation, and double pulse enhancement of the oscillations for a first pump

pulse fluence of 0.43Fth and a second pump pulse fluence of 0.33Fth. For cancellation,

the time delay between pump pulses is 127 fs, while for maximum enhancement the time

delay is 267 fs. Figure 6.18(c) shows cancellation at the first maximum as well as at the

second maximum, both leading to roughly the same lattice displacement for different exci-

tations (1 = 0.57Fth, 2 = 0.45Fth, 133 fs delay for first-maximum cancellation; 1 = 0.71Fth,

2 = 0.34Fth, 467 fs delay for second-maximum cancellation).

Many aspects of the current theoretical understanding of coherent phonon exci-



Chapter 6: Dynamics of Tellurium under Double Pulse Excitation 112

tation in absorbing solids are supported by the results presented here. Both DECP [70]

and LECP [71] predict that the excitation of electrons to the conduction band couples to

the lattice via the deformation potential. In essence, photoexcitation breaks a number of

bonds in the material and the nuclear motion that ensues follows a classical trajectory on

the potential energy surface determined by the number (and distribution) of the excited

carriers. In zincblende semiconductors, calculations show that the absorption of intense

femtosecond pulses can produce a potential surface with no minimum, leading to disorder

within hundreds of femtoseconds [22]. In tellurium, density functional theory calculations

show that transferring electrons from the valence band to the conduction band changes the

potential surface so that a larger equilibrium helical radius is established [85]. The cosine-

like response of our single pulse data supports the notion that the transfer of carriers, which

occurs within the pump pulse duration, establishes a new equilibrium lattice configuration

to which the ions, initially at rest, respond.

Within the theoretical framework described above, the process of coherent control

can be thought of in the following way. The first pump pulse establishes a new potential

surface on which the nuclei move. Initially displaced from the newly established equilibrium

configuration, the lattice achieves this configuration in approximately one quarter of a

phonon period, but the nuclei have momentum at that point. When the nuclei reach the

classical turning point of their motion, a second pump pulse can excite the precise density

of carriers to shift the equilibrium position to the current position of the ions, stopping the

oscillatory motion. Because photoexcitation of additional electrons can only increase the

equilibrium helical radius, the vibrations can only be stopped at the maximum displacement,

or for time delays of n + 1/2 phonon periods between pump pulses. Under weak excitation,

this n + 1/2 criterion has been verified experimentally in bismuth films [77].

Our experiments reveal that the strong excitation conditions that result in can-
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cellation do not support this n + 1/2 criterion and that the vibrations do not stop at the

maximum displacement. The 127 fs and 133 fs time delays that achieve cancellation as

shown in Figure 6.18 do not coincide with the time to reach the maximum displacement

in the single pump case, which is approximately 220 fs. The 467 fs time delay between

pulses that results in cancellation near the second maximum is also smaller than the 520

fs it takes for the ions to reach the second maximum under single pulse excitation. Similar

results occur in bismuth under strong excitation, where a 500 fs delay between pump pulses

cancelled the lattice vibrations near the second maximum, while the second maximum is

reached 600 fs after single pulse excitation [78], but the authors do not comment on the dis-

crepancy. Our dielectric tensor data reveal that the resonance energy redshifts beyond the

single pump maximum for phonon-cancelling excitations, as shown in Figure 6.18. Thus,

the nuclei do not stop their coherent oscillations at the classical turning point, which is

different from the low-excitation strength behavior of other materials [77].

The fact that the second pump pulse causes the ions to move past the classical

turning point without resulting in oscillations indicates that the value of the equilibrium

helical radius continues to change after the second pump has been fully absorbed. One

possibility is that the establishment of a new equilibrium radius by the second pump pulse

takes some time, allowing the lattice to track the equilibrium configuration adiabatically.

The physical origin of such a phenomenon would likely involve many body effects, such

as a deformation coupling that changes with lattice configuration. For a sufficiently large

displacement of the lattice, a further increase in the helical radius may allow the excited

electrons to redistribute in such as way as to increase the equilibrium helical radius. In this

way, the lattice essentially “pulls” the equilibrium position along until it costs too much

energy to displace the lattice further, at which point the helices stop their expansion and

slowly return to their unexcited configuration.
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6.3 Summary

The results presented in this chapter show that optically excited coherent phonons

in tellurium can be controlled at excitation strengths near the threshold for permanent

damage. The time delay between pump pulses that achieves cancellation or maximum

enhancement of coherent phonons is earlier than what is expected based on low excitation

experiments and reveals a departure from classical harmonic motion that is not apparent

from the single pulse excitation data. Similar observations in other materials for strong

optical excitation [78] suggest that this departure from damped harmonic motion may be a

trait common to coherent phonons in all materials. In addition to revealing the importance

of many-body effects on the post-second pulse dynamics, our results show that saturation

of linear absorption and nonlinear optical effects play a role in the interaction between the

pump pulse and the sample.
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Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency
domain using frequency-resolved optical gating,” Rev. Sci. Instrum., vol. 68, p. 3277,
1997.

[28] I. S. Ruddock and D. J. Bradley, “Bandwidth-limited subpicosecond pulse generation
in mode-locked CW dye lasers,” Appl. Phys. Lett., vol. 29, p. 296, 1976.

[29] T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,”
Rev. Mod. Phys., vol. 72, p. 545, 2000.

[30] A. H. Zewail, Femtochemistry: Ultrafast Dynamics of the Chemical Bond. Singapore:
World Scientific, 1994.

[31] R. W. Collins, “Automatic rotating element ellipsometers: Calibration, operation, and
real-time applications,” Rev. Sci. Instrum., vol. 61, p. 2029, 1990.

[32] S. N. Jasperson and S. E. Schnatterly, “An improved method for high reflectivity
ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum.,
vol. 40, p. 761, 1969.

[33] P. G. Snyder, M. C. Rost, G. H. Bu-Abbud, and J. A. Woollam, “Variable angle of
incident spectroscopic ellipsometry: Applications to GaAs-AlxGa1−xAs multiple het-
erostructures,” J. Appl. Phys., vol. 60, p. 3293, 1986.

[34] R. Greef, “An automatic ellipsometer for use in electromechanical investigations,” Rev.
Sci. Instrum., vol. 41, p. 532, 1970.

[35] S. Backus, J. Peatross, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, “Ti:sapphire
amplifier producing millijoule-level, 21-fs pulses at 1 kHz,” Opt. Lett., vol. 20, p. 2000,
1995.

[36] G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear
medium,” Opt. Lett., vol. 9, p. 510, 1984.

[37] A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-



References 118

focusing in transparent condensed media,” J. Opt. Soc. Am. B, vol. 16, p. 637, 1999.

[38] T. F. Albrecht, K. Seibert, and H. Kurz, “Chirp measurement of large-bandwidth fem-
tosecond optical pulses using two-photon absorption,” Opt. Commun., vol. 84, p. 223,
1991.

[39] S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond
spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev.
A, vol. 59, p. 2369, 1999.

[40] D. Beaglehole Proc. Phys. Soc. (London), vol. 85, p. 1007, 1965.

[41] H. Ehrenreich and H. R. Philipp Phys. Rev., vol. 128, p. 1622, 1962.

[42] R. F. Cohn, “Evaluation of alternative algorithms for dynamics imaging microellip-
sometry,” Appl. Opt., vol. 29, p. 304, 1990.

[43] M. Born and E. Wolf, Principles of Optics. Oxford: Pergamon, 6th ed., 1980.

[44] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing. New York: Cambridge University Press, 2nd ed.,
1992.

[45] D. E. Aspnes in Handbook of Optical Constants (E. D. Palik, ed.), New York: Academic
Press, 1985.

[46] L. P. Mosteller, Jr., and F. Wooten, “Optical properties and reflectance of uniaxial
absorbing crystals,” J. Opt. Soc. Am., vol. 58, p. 511, 1968.

[47] F. Wooten, “Reflectivity of uniaxial absorbing crystals,” Appl. Opt., vol. 23, p. 4226,
1984.

[48] A. M.-T. Kim. PhD thesis, Harvard University, 2001.

[49] G. H. Bu-Abbud, N. M. Bashara, and J. A. Woollam, “Variable wavelength, variable
angle ellipsometry including sensitivities correlation test,” Thin Solid Films, vol. 138,
p. 27, 1986.

[50] C. V. Shank, R. Yen, and C. Hirlimann, “Femtosecond-time-resolved surface structural
dynamics of optically excited silicon,” Phys. Rev. Lett., vol. 51, p. 900, 1983.

[51] M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and
evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B, vol. 2, p. 595, 1985.



References 119

[52] K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin,
J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse
laser ablation,” Phys. Rev. Lett., vol. 81, p. 224, 1998.

[53] L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “GaAs under ultrafast excitation:
Response of the dielectric function,” Phys. Rev. Lett., vol. 80, p. 185, 1998.

[54] J. S. Graves and R. E. Allen, “Response of GaAs to fast intense laser pulses,” Phys.
Rev. B, vol. 58, p. 13627, 1998.

[55] R. E. Allen, T. Dumitrica, and B. Torralva in Ultrafast Processes in Semiconductors
(K.-T. Tsen, ed.), New York: Academic Press, 2000.

[56] L. X. Benedict, “Dielectric function for a model of laser-excited GaAs,” Phys. Rev. B,
vol. 63, pp. 075202–1, 2001.
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