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Abstract The subject of electromagnetism in the presence of matter is both exten-
sively studied and rich in diverse phenomena. It spans such topics as the
quantization of the electromagnetic field to the semiclassical treatment
of light–matter interactions to the derivation of the Fresnel reflectivity
formulas. Interest in femtosecond optics is rooted in nonlinear opti-
cal phenomena and in the complex electron and lattice dynamics that
occur in a material following intense ultrashort-pulse irradiation. The
experiments we discuss are concerned mainly with the latter and lie
at the crossroad of femtosecond optics and materials science, so-called
ultrafast materials science.

1. Light–matter interactions
Fundamental to any description of light–matter interactions are Maxwell’s

equations [Haus, 1984],

∇×E = −∂B
∂t

(1)

∇×H = −∂D
∂t

+ J (2)

∇ ·D = ρ (3)
∇ ·B = 0 (4)

where, along with the usual field terms, E,D,B, andH, are the source
terms of charge ρ and current J. The influence of matter is cast in terms
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of constitutive relations among the fields,

B = µ0µH (5)
D = ε0εE (6)
J = σE (7)

for which the vacuum (matter-less) conditions are µ → 1, ε → 1, and
σ → 0. As written, the equations are essentially linear, in that an applied
E field of frequency ω generates a D field in the bulk of a material at
ω and no other frequency. To isolate the response of the material, we
introduce the polarization P,

D = ε0E + P (8)

P = ε0χ
(1)E (9)

where the (linear) susceptibility χ(1) is related to the dielectric constant
by ε =

(
1 + χ(1)

)
. Linear optical properties are fully described by either

ε or χ(1), which are complex, or by the complex index of refraction η+iκ.1

1.1 Relationship between linear optical
properties and band structure

A detailed description of light-matter interactions, from a semiclas-
sical or a quantum mechanical point of view, is quite satisfying when
executed well and abysmal when not. Fortunately, we need not try to
improve on success, and refer the reader to Refs. [Yu and Cardona, 1996]
and [Cohen and Chelikowsky, 1989]. Our task, then, is to highlight the
aspects of the semiclassical desciption of light-matter interactions that
are of particular relevance for this article.

While the electromagnetic field is treated classically, the electrons are
governed by the Hamiltonian [Yu and Cardona, 1996]

H =
p̂2

2m
+ V (r̂) +

e

mc
A · p̂ (10)

where the first term is a kinetic energy term involving the momentum
operator p̂, the second term is the electron–ion Coulomb interaction, and
the third term encompasses the coupling between the applied field (rep-
resented by the vector potential A) and the electrons.2 The eigenstates
of the above system in the absence of the perturbing field A are the well-
known Bloch wavefunctions |n,k〉, which in the position representation
take the form

〈r|n,k〉 = un,k(r)ei(k·r). (11)
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Here, un,k(r) is a function with the periodicity of the lattice potential
V (r), and n and k corresponds to the band index and crystal momen-
tum, respectively, in the reduced-zone scheme [Ashcroft and Mermin,
1976]. The energy eigenvalues En(k) constitute the band structure of
the crystal.3 The difference between the band structures of different ma-
terials arises from differences in their lattice potentials, due to variations
in composition, lattice configuration, or both. Of particular interest to
the experiments described in Section 4 is the fact that a lattice poten-
tial that is changing in time gives rise to a time-varying band structure.
Ultrashort laser pulses allow one to track the major features of the band
structure via their manifestation in the linear optical properties of the
material.

To investigate the interaction of light with the system described by
Eq. (10), we consider the situation where the applied field excites elec-
trons from an occupied (valence band) state to an unoccupied (conduc-
tion band) state. The number and energy distribution of such transitions
give rise to the optical properties of a solid. Specifically, the imaginary
part of the dielectric tensor can be written as [Yu and Cardona, 1996, Co-
hen and Chelikowsky, 1989]

Im [εi(ω)] ∼ 1
ω2

∑
nc,nv,k

δ (Enc(k)− Env(k)− h̄ω)
∣∣〈nc,k|p̂i|nv,k〉

∣∣2.
(12)

The momentum matrix element quantifies the strength of the coupling
for vertical transitions between various conduction and valence band
states.4 The dependence of the momentum matrix element on the direc-
tion of the applied field, denoted by the subscript i = x, y, z, allows for
an anisotropic optical response (e.g., birefringence). The term common
to all elements of the dielectic tensor is the joint density of states (JDOS)

JDOS =
∑

nc,nv,k

δ (Enc(k)− Env(k)− h̄ω) , (13)

which depends solely on the shape of the band structure. The JDOS
peaks at photon energies equal to the transition energy between many
different states in k space. The fact that parallel conduction and valence
bands produce a large peak in Im[ε(ω)] is a direct consequence of the
form of the JDOS in Eq. (13). In fact, the linear optical response of
many solids is dominated by only a few peaks in their JDOS — that is,
by resonances at a small number of photon energies produced by only a
few regions of parallel bands.

It is important to note that the correspondence between band struc-
ture and dielectric function is not one-to-one. Many band structures can
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Figure 1. (a) Band structure [Cohen and Chelikowsky, 1989] and (b) dielectric
function [Palik, 1985] of GaAs.

produce the same dielectric function,5 which means that the interpreta-
tion of optical properties must be done cautiously. Changes in the linear
optical properties can be used to make general statements about the
changes in band structure, but additional information is often required
to localize the dynamics in k space.

As an example of the direct relationship between band structure and
dielectric function, Figure 1 shows the band structure and the dielectric
function of GaAs. The characteristic absorption peaks in Im[ε(ω)] at 3.1
eV (E1) and 4.7 eV (E2) are due in part to a large joint densities of states
around the L and X valleys, as indicated by the shaded regions in Figure
1(a). The real part shows the characteristic dispersive structure for each
absorption peak, in agreement with the Kramers–Kronig relations.

1.2 The Drude–Lorentz model
The Drude–Lorentz model, also known as the Lorentz oscillator model

when applied to semiconductors and as the Drude model when applied
to metals, attempts to describe the optical response of a material as that
of a classical harmonic oscillator. While simple, involving only a few free
parameters, the Drude–Lorentz model is surprisingly good at describing
the optical properties of many semiconductors and metals.

The Lorentz model describes, in a phenomenological way, the polar-
ization induced in a material by the applied E field. The situation we
consider is that of an electron in a solid that is described by its displace-
ment x from its equilibrium position.6 The equation of motion for the
displacement x is taken to be that of a harmonic oscillator,

d2

dt2
x + Γ

d

dt
x + ω2

0x = F (t) (14)
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where Γ is a phenomenological damping coefficient, ω0 is the resonance
frequency of the oscillator (a real resonance in the material), and the
driving force is due to the applied field,

F (t) =
e

m

[
Ee−iωt + E∗eiωt

]
. (15)

Without loss of generality, the equation of motion for x(t) can be solved
by neglecting the second driving term above and considering a trial so-
lution of the form x(t) = Ce−iωt. . .

C[−ω2 − iΓω + ω2
0]e

−iωt =
e

m
Ee−iωt (16)

⇒ C =
e

m
E

1
ω2

0 − ω2 − iΓω
(17)

⇒ x(t) =
e

m
E

e−iωt

ω2
0 − ω2 − iΓω

. (18)

While x(t) describes the motion of a single electron, it is often the case
that many electrons in a solid respond in the same fashion. Thus, if N
electrons respond as x(t), then the total polarization is given by

P (t) = Nex(t) = ε0χ
(1)E(t), (19)

where Eq. (9) is used to relate the applied field E(t) to the polarization
P (t) and to introduce the linear susceptibility. Hence,

χ(1) =
Ne

ε0

x(t)
E(t)

=
Ne2

ε0m

1
ω2

0 − ω2 − iΓω
. (20)

For our purposes, the dielectric function is more useful than the suscep-
tibility, and takes the form,

Re[ε(ω)] = 1 + f
E2

res − (h̄ω)2

(E2
res − (h̄ω)2)2 + (Γ · h̄ω)2

(21)

Im[ε(ω)] = f
Γ · hω

(E2
res − (h̄ω)2)2 + (Γ · h̄ω)2

. (22)

There are two methods by which the Lorentz model is applied to real
absorbing materials. First, because the Lorentzian shape of Im[εLorentz(ω)]
is similar to a δ-function, materials can be modeled by a distribution of
Lorentz oscillators, analogous to the distribution of δ-function contri-
butions to the JDOS in Eq. (13). The sum of many oscillators would
produce a “single resonance” in the material (e.g., the E2 peak in GaAs).
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Figure 2. Lorentz oscillator model fits to (a) Te and (b) GaAs. Black lines represent
literature values of Re[ε] (solid) and Im[ε] (dashed) [Palik, 1985], while gray lines
represent the best-fit values of Re[εLorentz] (solid) and Im[εLorentz] (dash-dotted).

However, for modeling changes in the dielectric function on a femtosec-
ond time scale, this technique is numerically challenging to implement
(due to noise in the data) as well as physically unsatisfying in the inter-
pretation of its results.

A second method of applying the Lorentz model to real materials is
to describe an entire resonance by the three free parameters of a single
oscillator; the resonant frequency ω0, the linewidth Γ, and the oscillator
strength f = Ne2/ε0m. Each parameter is connected to features of the
band structure. The resonant frequency ω0 corresponds to the position
of the peak in the JDOS. The linewidth Γ is related to the distribution
of energy levels around the resonant frequency — sharper absorption
lines correspond to smaller values of Γ, arising from regions of parallel
bands. Lastly, the oscillator strength f carries information about the
number of states contributing to the resonance at ω0.

As an example of the success of the Lorentz model in describing real
materials, Figure 2 shows fits to Te and to GaAs. In each case, the fit
is the sum of two Lorentz oscillators with different values of ω0, Γ, and
f for each term. This two-oscillator model follows the major features
of the literature optical properties in each case, but fails to capture
smaller features. For example, Im[εLorentz(ω)] does not vanish for photon
energies below the band gap, nor is it sensitive to sharp features near
other critical points. Nevertheless, the Lorentz model is sensitive to large
resonances in a material — the parameters of the fit to GaAs in Figure
2(b) indicate resonances at 3.18 eV (E1 peak) and 4.67 eV (E2 peak).7

The form of the Drude model for metals is

εDrude(ω) = 1 +
Ne2

ε0m

(
iτ

ω(1− iωτ)

)
, (23)
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Figure 3. Drude model fit to Ag. Black lines represent literature values of Re[ε]
(solid) and Im[ε] (dashed) [Palik, 1985], while gray lines represent the best-fit values
of Re[εDrude] (solid) and Im[εDrude] (dash-dotted).

which is equivalent to Eqs. (21) and (22) with Γ → 1/τ and ω0 → 0.
By convention, a plasma frequency is defined ω2

p = Ne2/ε0m to play
the role of the oscillator strength above. The classical derivation of
εDrude(ω) is analogous to the above derivation for εLorentz(ω), except
that an induced current J rather than an induced polarization P results
in a differential equation that lacks a harmonic potential term [Ashcroft
and Mermin, 1976]. The optical properties of many metals consist of a
Drude (intraband) contribution from “free” electrons in half-filled bands
in addition to Lorentz oscillator (interband) contributions from available
vertical transitions. That is, even good metals are rarely described by
the Drude model alone. To illustrate this fact, Figure 3 shows a Drude
model fit to Ag, with ωp = 8.3 eV and τ = 50 fs. While the fit describes
low-photon-energy behavior well, it is not accurate near 4 eV due to
resonance contributions to ε(ω).

1.3 The Kramers–Kronig relations
Thus far we have discussed both the real and the imaginary part of the

dielectric function as if the two quantities were independent. In reality,
Re[ε(ω)] and Im[ε(ω)] are linked through the Kramers–Kronig relations
[Jackson, 1975]

Re[ε(ω)] = 1 +
2
π
P

∫ ∞

0
dν

ν Im[ε(ν)]
ν2 − ω2

(24)

Im[ε(ω)] =
2ω

π
P

∫ ∞

0
dν

1− Re[ε(ν)]
ν2 − ω2

(25)

where P represents the principal value of the integral. It is worth noting
that the Kramers–Kronig relations follow from the fact that the electric
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field E drives the material polarization P, as in Eq. (9) [Jackson, 1975].
Interestingly, the availability of transitions at a single photon energy con-
tributes locally to Im[ε(ω)] (see Eq. (12)) but affects Re[ε(ω)] globally
according to the Kramers–Kronig relations. For fitting dielectric func-
tion data to the Lorentz model when some of the material resonances
lie outside the measured spectal range, the expression for the imaginary
part will fit the data correctly due to the local contribution of transitions,
but the real part will have unaccounted-for global contributions. It is
often the case that an additive constant to the real part can dramatically
improve the fit by playing the role of these Kramers–Kronig-type contri-
butions from resonances outside the detected spectral range. Since the
real part of the Lorentz model is mostly constant far from a resonance,8

a single additive-constant free parameter is often sufficient to capture all
the resonance contributions to Re[ε(ω)] from outside the spectral range
of the data.

2. Ultrafast dynamics of solids under intense
photoexcitation

Despite the broad array of topics that fall under the title “ultrafast
dynamics of solids,” the discussion below is of limited range. For in-
stance, we do not discuss the myriad of electronic phenomena that have
been observed at low excitation densities of 1014 to 1018 cm−3, a review
of which can be found in Ref. [Shah, 1996]. The reason for this omission
is that such phenomena are rarely observed in experiments where the
excited carrier density is on the order of 1022 cm−3. Although excited
carrier effects are present and are more pronounced than at lower densi-
ties, the material dynamics are often dominated by the ionic motion that
results from excitation of a significant fraction of the valence electrons.
The text that follows is an attempt to present the framework in which
these dynamics are understood.

2.1 Molecular dynamics and coherent control
The idea that solid dynamics are determined by ionic motion is rooted

in the microscopic picture of molecular electronic transitions and molec-
ular dynamics. In fact, the molecular case is even more extreme than
the solid one — photoexcitation in molecules often results in dissocia-
tion, whereas the sharing of electrons in a solid leads to only a partial
weakening of bonds under photoexcitation.9 Consider a diatomic sodium
molecule, where the energy of the system as a function of nuclear dis-
placement is as shown in Figure 4. The curves in this figure show the
energy of the system in different electronic configurations as a function
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Figure 4. Potential energy curves for a diatomic sodium molecule, showing bond
stretching or dissociation for different excited state potentials. Numbers 1, 2 and 3,
indicate the possible transitions to products in a two-pulse excitation scheme after
the first pulse excites the electronic system to 2 1Πg. After Ref. [Assion et al., 1996].

of ionic separation. Often, the excited state potentials have a shape
that results in dissociation (no minimum at finite separations) or bond
stretching (a minimum at a different separation than the ground state).
When this is the case, electronic transitions are coupled to molecular
vibrational transitions [Atkins, 1983], where our intuition predicts that
the ensuing nuclear motion is determined by the new potential in a clas-
sical way — an excitation from the ground X 1Σ+

g state to the 2 1Πg state
of Figure 4 would leave the nuclei displaced from equilibrium and they
will thus begin to oscillate. The idea that the nuclei remain fixed during
the electronic transition10 is equivalent to the approximation of verti-
cal transitions in crystals and is known as the Franck-Condon principle
[Atkins, 1983].

The quantum mechanical derivation of molecular excited state dynam-
ics was first provided by Heller [Heller, 1978, Heller, 1981]. To summa-
rize, immediately after photoexcitation, the ground nuclear eigenstate
evolves on the excited state potential surface following the classical tra-
jectory. The anharmonicity of the excited state potential determines
the rate at which the nuclear wavepacket spreads and leads to devia-
tions from the classical trajectory. Of primary interest in our case is
understanding the way in which the resulting nuclear dynamics can af-
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fect properties such as the dielectric function. Heller points out the lack
of such a description at the time, stating

After the electrons have made a transition, the nuclei experience new
forces; they find themselves displaced relative to the equilibrium geome-
try of the new potential surface, and interesting dynamics should ensue.
Unfortunately, most discussions of electronic transitions cut short any
allusions to dynamics and explain the absorption spectrum in terms of
Franck-Condon overlaps of the initial nuclear wavefunction with a time-
independent vibrational eigenfunction of the upper electronic potential
surface. We (and the nuclear wave function) are left hanging; we are
given no explanation of the time evolution of the hapless nuclei which,
once the photon is absorbed, are ready to move in ways that determine
the spectra [Heller, 1981].

Before making the connection between molecular and crystal dynam-
ics, we discuss an important application of Heller’s work — the coherent
control of molecular dissociation. Tannor, Kosloff, and Rice devised a
scheme under which the dissociation dynamics of a hypothetical molecule
can be controlled simply by varying the time delay between two femtosec-
ond pulses [Tannor et al., 2086, Rice and Zhao, 2000]. They considered
a ground state potential energy surface with one bound state (ABC)
and two dissociated states (AB + C, A + BC), along with different ex-
cited state potential surfaces. They demonstrated that by allowing the
nuclear wave function to propagate on the excited state potential for
specific (different) lengths of time before the second pulse arrives, the
“final product” of the two-pulse excitation can be controlled.11 Experi-
mental realizations of end-product control in molecular dissociation (in
systems such as that of Figure 4) have been achieved with multiple-pulse
and shaped-pulse excitations [Assion et al., 1996, Brixner et al., 2001].

2.2 The molecular picture of crystal dynamics
Many of the features of the dynamics of solids can be understood

within the framework described above, albeit with some extensions.
Photoexcitation of a large density of electrons establishes a new poten-
tial energy surface on which the ions move. The new potential may have
no minimum near the initial lattice configuration, resulting in large nu-
clear displacements, disordering, and often “damage.” If a new potential
minimum is established, then the ions can respond to the new poten-
tial in a more controlled fashion. Nuclear motion on the new potential
energy surface leads to commensurate changes in the band structure,
and, in turn, in the optical properties of the solid. That is, the available
transitions for the electrons are determined by the lattice configuration,
the dynamics of which are determined by the excited electrons.
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Additional considerations when discussing solids concern the treat-
ment of the “excited electronic state.” First, the manifold of excited
energy states is virtually a continuous function of the excited electron
density. In general, the excited electron density cannot specify an unique
potential because of the possible permutations of transitions among the
1023 cm−3 valence electrons. The idea that material dynamics depend
on the excited electron density alone is an approximation that holds
when the carriers can thermalize before any significant nuclear motion
occurs. Excited electrons (holes) thermalize within 10 fs at densities of
1021 cm−3 or more,12 leading to a Fermi-Dirac distribution within the
conduction (valence) band and a loss of memory of the initial excited
carrier configuration. Because the ions spend most of their time (all but
10 fs) evolving on a potential determined by a Fermi-Dirac distribution
of carriers, the excited electron density is often sufficient to specify the
“excited electronic state.” A second concern is that the electronic state
and the nuclear state do not evolve independently. A particular excited
electron distribution establishes a potential surface to which the lattice
responds by deformation. This deformation results in a new band struc-
ture, resulting in a redistribution of electrons and, in general, a modified
potential. In essence, the excited electron potential becomes a dynamic
quantity which depends on the nuclear coordinates. These many-body
interactions are more pronounced in solids than in molecules and can dy-
namically modify the potential energy surface and further perturb the
semiclassical trajectories of the ions. Electron-electron interactions of
exchange and correlation, electron-phonon interactions, and other many-
body interactions offer avenues by which the electron distribution within
a band can exert a force on the ions.

Even with the further complications of dealing with solids, nuclear
dynamics can still be treated with excited state potential surfaces. The
accuracy of “exact” calculated results for solids will be less than for
molecules, simply due to the increased complexity of a condensed system.
Usually, approximations to reduce the complexity of the system make
the problem tractable and model a specific experimental situation. We
present an example of such a treatment in the following section.

2.3 Ultrafast disordering of zincblende
semiconductors

The observation of laser-induced disordering on a time scale shorter
than the thermalization time between excited carriers and the lattice was
observed by a number of groups working with semiconductors [Shank
et al., 1983b, Tom et al., 1988, Govorkov et al., 1991, Saeta et al.,
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(a) (b)

Figure 5. Potential energy surface as a function of transverse acoustic (δt) and lon-
gitudinal optical (δl) lattice displacements for silicon (a) in the ground state electronic
configuration and (b) when 15% of valence electrons are excited to the conduction
band. The stable minimum at δt = δl = 0 becomes unstable for sufficient excitation
densities, as shown here. After Ref. [Stampfli and Bennemann, 1994].

1991, Sokolowski-Tinten et al., 1991]. Although the disordering of solids
via thermal processes (i.e., melting) has been known for a long time, a
theoretical description of lattice instability as a result of photoexcitation
was first provided by Stampfli and Bennemann [Stampfli and Benne-
mann, 1990, Stampfli and Bennemann, 1994]. Apparently derived inde-
pendently from the work described above, their treatment of zincblende
semiconductors shares many features with the molecular description of
nuclear motion on an excited state potential.

Stampfli and Bennemann consider a tight-binding Hamiltonian that
includes nearest-neighbor interactions only. A calculation of the poten-
tial surface for the lattice in the ground electronic state configuration is
shown for silicon in Figure 5(a). A clear minimum exists as a function of
transverse acoustic (δt) and longitudinal optical (δl) lattice distortions,
indicating a stable lattice. The band structure and optical properties
of the calculated ground state configuration agree well with the known
properties of Si. After photoexcitation, the excited electrons rapidly take
on a Fermi-Dirac distribution13 and the lattice potential is recalculated
with the different band-filling. As shown in Figure 5(b), when 15% of
valence electrons are excited to the conduction band,14 the lattice po-
tential no longer displays a stable minimum at the ground state lattice
configuration. The calculated trajectory of the ions is shown in Figure 6,
displaying oscillations and translation in one direction and pure trans-
lation in another, following the shape of the potential in Figure 5(b).
The significant motion of ions on a time scale of 100 fs agrees with the
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Figure 6. Trajectory of ionic motion on the potential shown in Figure 5(b). Signif-
icant nuclear displacements are predicted to occur within 100 fs. After Ref. [Stampfli
and Bennemann, 1994].

experimental results of many groups [Shank et al., 1983b, Tom et al.,
1988, Govorkov et al., 1991, Saeta et al., 1991, Sokolowski-Tinten et al.,
1991], and the onset of metallic behavior on this time scale has also been
observed [Callan et al., 1998, Callan et al., 2001a].

The main difference between the response of silicon and that of Na2

molecules to photoexcitation is that an ensemble of ions, rather than
two, are set in motion on a new potential surface. As shown in Figure
6, the ionic motion is confined to a certain path for all initial condi-
tions (within a certain range). As discussed in Section 4, the physical
mechanisms underlying the response of tellurium to intense photoexci-
tation are similar to those that govern the response of silicon. Whereas
nuclear motion in silicon develops along two directions, the photoiniti-
ated nuclear motion in tellurium affects only a single lattice parameter.
Moreover, the excited state potential in tellurium has a minimum near
the initial lattice configuration, which leads to lattice vibrations that are
analogous to the vibrations observed in Na2.

3. Nonlinear optical properties
Although the majority of this article concerns linear optics in solids,

nonlinear optical processes are encountered as well. A nonlinear optical
response occurs when fields of frequency different than that of the applied
field are generated. The nonlinear response is usually isolated from the
linear one, and Eq. (9) becomes

P = ε0χ
(1)E + PNL (26)

PNL = ε0χ
(2) : E ·E + ε0χ

(3) :: E ·E ·E + · · · . (27)

Essentially, the material response is expanded in powers of the applied
E field. Note that the total field is involved in driving the polariza-
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tion and this total field may involve contributions from laser pulses of
different frequency travelling in different directions with different field
polarizations. The total polarization then acts as a driving term, as in
Eq. (8), to radiate fields at the fundamental frequency15 as well as at
the frequency of the nonlinear polarization.

Broadly speaking, there are two criteria which must be satisfied in
order to generate nonlinear radiation. For a nonlinear process involving
n fields of the form16

Ej(t) =
1
2

(
Eje

i(~kj ·r−ωjt) + E∗
j e−i(~kj ·r−ωjt)

)
, (28)

for j = 1 . . . n, these criteria are

ωNL =
n∑

i=1

±ωi (29)

~kNL =
n∑

i=1

±~ki (30)

where the choice of sign indicates whether the “ω” or the “−ω” term of
a particular field contributes, as determined by the particular nonlinear
process considered and the experimental arrangement. Equation (29) is
always satisfied in a nonlinear process and specifies the nonlinear fre-
quency generated. Equation (30) is the “phase-matching” condition and
determines the direction of the radiated nonlinear field.17 In the remain-
der of this Section, we present an overview of second- and third-order
nonlinearities and refer the interested reader to Ref. [Boyd, 2003] for
further details.

3.1 Second-order nonlinearities
The type of second-order nonlinear process most often encountered

in the lab is second harmonic generation (SHG), which involves two
degenerate driving fields (ω1 = ω2) of the form in Eq. (28). The nonlinear
polarization generated by SHG is

P (2)(2ω1) = ε0χ
(2)(2ω1 : ω1, ω1)E1E1e

i(~k(2ω1)·r−2ω1t) (31)

where the criteria of Eqs. (29) and (30) involve only positive terms
(e.g., ωNL = ω1 + ω1). We have allowed for less-than-perfect phase
matching because the dispersion of the material determines whether
~k(2ω1) = 2~k(ω1). When the phase matching is not perfect, the nonlin-
ear field generated at different positions in the crystal intefere somewhat
destructively, reducing the total radiated nonlinear field.
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The most common application of SHG is in measuring the duration
of a femtosecond pulse via autocorrelation. In practice, two copies of
the same pulse are overlapped in a nonlinear crystal with a controllable
delay τ between the two pulses. Because the nonlinear field depends on
the total intensity, the SHG signal S varies with the temporal overlap of
the pulses. One can extract the pulse duration from the shape of S(τ).18

3.2 Third-order nonlinearities
In general, third-order nonlinearities require three driving fields. In

practice, two or even all three fields are degenerate. One situation of
particular interest is the following interaction between two fields of fre-
quency ω1 and ω2

P (3)(ωNL) =
1
2
ε0χ

(3)(ωNL : ω1,−ω1, ω2)E1E
∗
1E2e

i(~k2·r−ω2t) (32)

ωNL = ω1 − ω1 + ω2 (33)
~kNL = ~k1 − ~k1 + ~k2 (34)

This particular nonlinear mixing can result in intensity-dependent ef-
fects. For χ(3) real, an intensity-dependent index of refraction leads to
self-focussing of a gaussian beam.19 An imaginary χ(3) produces intensity-
dependent absorption (i.e. two-photon absorption). Both phenomena
are widely applied in the field of optics. Self-focussing, or Kerr lensing, is
used to mode-lock oscillators and contributes to the generation of white-
light femtosecond pulses. Two-photon absorption (TPA) is commonly
used for cross-correlation of ultrashort pulses because it is automatically
phase-matched and produces a field at the fundamental.

Of particular interest to researchers is how nonlinear susceptibilities
are related to (and can reveal) material properties. For instance, the
process of two-photon absorption described in Eq. (32) does not occur
unless a photon of energy h̄(ω1 + ω2) would be absorbed linearly. This
is not to say that Im[χ(3)] depends on Im[χ(1)]. Rather, both depend
on the availability and distribution of, in this case, vertical electronic
transitions.

In addition to electronic transitions, the existence of lattice vibrations
(phonons) serves to enhance nonlinear susceptibilities, in particular χ(3),
via the change in linear optical properties with lattice distortion. When
the interaction in Eq. (32) is used to probe (or excite) a phonon ωv of
a solid where ω1 − ω2 = ωv, it is called a Raman interaction. The form
of the phonon contribution to the nonlinear susceptibility is given by
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[Boyd, 2003]

χ
(3)
Raman(ω2 : ω1,−ω1, ω2) ∼

(
∂α

∂q

)2 1
ω2

v − (ω1 − ω2)
2 + 2i (ω1 − ω2) γ

,

(35)
where q is a displacement of the lattice associated with the phonon and
γ is the associated damping constant. By convention, ω2 is referred to
as the Stokes frequency when ω2 < ω1 and as the anti-Stokes frequency
otherwise. The quantity α is the polarizability of the material, which
changes as the lattice is distorted. Note that χ

(3)
Raman contains a reso-

nance denominator of similar form to the linear susceptibility in Eq. (20),
however the “strength” of the Raman process depends on the sensitivity
of the polarizability to lattice displacement. Analogous to the electronic
case, where an applied field induces an oscillating electronic polarization
that leads to excitation of an electron, Raman interactions lead to the
excitation of phonons.

4. Ultrafast Materials Science
Early investigations into ultrafast materials science relied on intense

femtosecond laser pulses to initiate and probe dynamics that follow
from photoinduced lattice instabilities [Shank et al., 1983b, Shank et al.,
1983a]. Recently, the focus has shifted from photoinduced instabilities
that lead to a disordered state [Saeta et al., 1991, Govorkov et al., 1991,
Sokolowski-Tinten et al., 1991] to those that result in an altered lattice
configuration [Misochko et al., 1999, Cavalleri et al., 2001, Sokolowski-
Tinten et al., 1998] and to the methods by which lattice dynamics can be
controlled [Wefers et al., 1995, Hase et al., 1996, Bartels et al., 1998, De-
Camp et al., 2001]. As discussed in Section 2, the nuclear motion is
believed to follow a trajectory dictated by the potential surface of the
electronic excited state [Stampfli and Bennemann, 1994], much like the
semiclassical picture of nuclear dynamics in molecules [Heller, 1978, Tan-
nor et al., 2086, Assion et al., 1996, Brixner et al., 2001].

In this Section, we discuss the electron and lattice dynamics of a
variety of semiconductors following excitation by an intense femtosecond
laser pulse. We observe these dynamics by measuring the dielectric
tensor of the material with femtosecond time resolution. The linear
optical properties of a material provides a view of the underlying band
structure and lattice configuration that the reflectivity of a sample alone
cannot. Consequently, measurements of the femtosecond time-resolved
dielectric tensor provide a greater amount of information about electron
and lattice dynamics and about the nature of ultrafast phase transitions
than other optical probes.
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We performed pump–probe experiments on commercially available
GaAs, on a-GeSb thin films, and on single-crystal tellurium using 800-
nm pulses from a multipass amplified Ti:sapphire laser, producing 0.5-
mJ, 35-fs pulses at a repetition rate of 1 kHz [Backus et al., 1995].
In each case, s polarized pump pulses excite the sample while the p
polarized transient reflectivity is measured using a white-light pulse (1.65
– 3.2 eV). Two-photon absorption measurements [Albrecht et al., 1991]
indicate that the time-resolution of the pump–probe setup is better than
50 fs, while calculations based on measurements of the spectrum and
chirp of the white-light probe indicate that the time resolution of the
probe varies from 20 fs near 1.7 eV to 60 fs near 3.2 eV [Kovalenko et al.,
1999]. The entire system is calibrated to obtain absolute reflectivity.
Measurements of the absolute reflectivity at two angles of incidence allow
for determination of the linear optical properties by numerical inversion
of the Fresnel formulas. Further details of this experimental technique
can be found in Ref. [Roeser et al., 2003].

4.1 Ultrafast carrier and lattice dynamics in
GaAs

Shortly after the introduction of femtosecond laser sources, numerous
experiments were conducted on semiconductors where a transition to a
metallic state was observed upon laser irradiation. Experimental tech-
niques included pump–probe reflectivity measurements [Shank et al.,
1983b], both reflectivity and second harmonic measurements [Shank
et al., 1983a, Saeta et al., 1991, Tom et al., 1988, Govorkov et al., 1991],
and pump–probe microscopy [Downer et al., 1985, Sokolowski-Tinten
et al., 1998]. While a laser-induced phase transition was observed in
each experiment with high precision, the nature of the resulting phase
and the changes in the band structure were difficult to determine. This
difficulty is due to the fact that many different values of ε(ω), and hence
many different band structures and material phases, can yield the same
reflectivity at a particular angle of incidence.

We performed single-shot femtosecond time-resolved dielectric func-
tion measurements of GaAs to investigate carrier and lattice dynamics
associated with its ultrafast semiconductor-to-metal transition under in-
tense photoexcitation [Callan et al., 1998, Huang et al., 1998]. Figure
7 shows dielectric function measurements of GaAs. Without excitation
of the sample, ε(ω) matches literature values of the dielectric function
[Palik, 1985], confirming that our technique measures the dielectric func-
tion correctly. Figure 7(b) shows ε(ω) 500 fs after excitation below the
threshold for permanent damage (Fth = 1.0 kJ/m2). Shortly after exci-



18

energy (eV)

d
ie

le
c
tr

ic
 f

u
n
c
ti
o

n

1.5 3 3.5

40

30

20

10

0

−10
2.5

(a)

energy (eV)

d
ie

le
c
tr

ic
 f

u
n
c
ti
o

n

1.5 2 2.5 3 4.5

40

30

20

10

0

−10

(b)

energy (eV)

d
ie

le
c
tr

ic
 f
u
n
c
ti
o

n

1.5 2 2.5 3.5 4.5

80

60

40

20

0

−20

(c)

no pump

2 3.5 4

0.32 Fth

500 fs

1.6 Fth

2 ps

3 4

Figure 7. Dielectric function data for GaAs — • = Re[ε], ◦ = Im[ε]. (a) Under no
excitation, ε(ω) matches literature values of the dielectric function, represented by
the solid and dashed curves [Palik, 1985]. An example of changes in ε(ω) due to the
presence of excited carriers is shown in (b). (c) At sufficiently high pump fluences, a
semiconductor-to-metal transition is observed, as evidenced by the fit to the Drude
model (ωp = 13.0 eV and τ = 0.18 fs).

tation, before the ions of the lattice can move, changes in ε(ω) are due
to the presence of excited carriers in the conduction band. The decrease
of Im[ε(ω)] around the E1 critical point (near 3 eV) is likely due to
Pauli blocking of the transition by electrons in the conduction band. At
higher excitation fluences, a transition to a metallic state is observed,
an example of which is shown in Figure 7(c). This data is well fit by
the Drude model, which describes free-electron (metallic) behavior. The
parameters of the fit (a plasma frequency of 13 eV and a relaxation time
of 0.18 fs) reveal that virtually all of the valence electrons are free and
that the band gap has completely collapsed. Theoretical calculations
of the evolution of the dielectric function of GaAs after femtosecond-
pulse excitation agree with our experimental results [Graves and Allen,
1998, Allen et al., 2000, Benedict, 2001].

4.2 Ultrafast phase changes in a-GeSb
The speed of ultrafast phase transitions and the large reflectivity vari-

ations associated with them make materials that display such transitions
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good candidates for optical switches and high speed optical data stor-
age. Thin films of a-GeSb allow optically induced, optically reversible
amorphous-to-crystalline transitions. In 1998, Sokolowski-Tinten and
co-workers presented normal-incidence reflectivity measurements which
suggested that femtosecond pulses above the threshold for permanent
crystallization can induce an ultrafast disorder-to-order transition in
amorphous Ge0.06Sb0.94 films within 200 fs [Sokolowski-Tinten et al.,
1998]. The suggestion of a subpicosecond amorphous-to-crystalline phase
transition raises an important question: how can lattice ordering occur
in less time than it takes to establish thermal equilibrium between the
laser-excited electrons and the lattice?

We performed single-shot dielectric function measurements of a 50-
nm thin film of a-Ge0.06Sb0.94 to determine the nature of the phase
during its ultrafast phase transition [Callan et al., 2001b]. Figure 8(a)
shows the agreement between ε(ω) obtained at a time delay of −1 ps and
literature values of the dielectric function [Palik, 1985]. As a reference,
the dielectric function of the crystalline phase is also shown.20 Because
the film was optically thin and covered by a 1.25-nm SbO2 oxide layer
[de Sande et al., 1994], this sample is considered a four-medium system:
air, oxide, a-GeSb thin film, and fused silica substrate.

Figure 8(b) shows the response of the dielectric function 200 fs after
arrival of a pump pulse of fluence F = 320 J/m2, which is 60% above
the threshold for permanent crystallization (Fcr). At this excitation flu-
ence, the dielectric function remains unchanged from 200 fs to 475 ps.
The same dielectric function is observed on subpicosecond time scales
for all fluences above Fcr, indicating the existence of a nonthermal phase
after femtosecond-pulse excitation. The existence of a new phase at ul-
trashort time delays for all fluences above Fcr was correctly identified
by the authors of Ref. [Sokolowski-Tinten et al., 1998], however, the
material is not crystalline, as evidenced by the discrepancy between the
measured dielectric function and that of the crystalline phase (see Figure
8(b)). This discrepancy is brought out by Figure 8(c), which shows the
normal-incidence reflectivity as calculated from our time-resolved dielec-
tric function measurements. Only at the 2.01-eV photon energy of the
experiments in Ref. [Sokolowski-Tinten et al., 1998] does the reflectivity
at 200 fs after excitation above Fcr match that of the crystalline phase.
Furthermore, even at 2.01 eV, we find that for angles of incidence near or
above the pseudo-Brewster, the reflectivity does not go to the crystalline
level for pump fluences above Fcr. Our measurements thus show that
broadband measurements of ε(ω) enable one to distinguish phases that
may appear the same based on reflectivity or transmission for a single
photon energy at a single angle of incidence.
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Figure 8. (a),(b) Dielectric function data for a-GeSb thin films — • = Re[ε(ω)],
◦ = Im[ε(ω)]: (a) ε(ω) under no excitation (−1 ps time delay), and (b) ε(ω) 200 fs
after excitation of 320 J/m2. In both plots, the solid and dashed curves show the real
and imaginary parts of ε(ω) for the amorphous phase from previous measurements,[J.
Soĺıs, 2001] and the dotted and dash-dotted curves show the real and imaginary parts
of ε(ω) of the crystalline phase. (c) Normal-incidence reflectivity calculated from the
time-resolved ε(ω) data. The reflectivity of the amorphous, crystalline, and liquid
phases are shown for reference.

4.3 Investigation of a displaced lattice:
Coherent phonons in Te

Ultrashort-pulse excitation of Te instantaneously weakens lattice bond-
ing, establishing new equilibrium lattice positions around which the lat-
tice ions vibrate [Cheng et al., 1990, Zeiger et al., 1992, Tangney and
Fahy, 2002]. Because the phase of the generated lattice oscillations is
the same in the entire pumped volume, probe pulses of shorter duration
than the phonon period can be used to observe changes in the optical
properties of Te (typically, ∆R/R ∼ 10%) at different degrees of lattice
distortion [Cheng et al., 1990, Hunsche et al., 1995]. Experimental work
by Bardeen [Bardeen, 1949] and others [Blum and Deaton, 1965] found
a pressure-induced semiconductor-to-metal transition in Te. These re-
sults coupled with investigations of coherent phonons in other materials
[Cheng et al., 1993] suggest that modification or even control of the phase
(semiconducting vs. semimetallic) of Te is possible at a rate equal to the
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Figure 9. Dielectric tensor data for Te — • = Re[ε], ◦ = Im[ε]. At −500 fs time
delay, both the (a) ordinary and (b) extraordinary dielectric function agree with
literature values for the dielectric tensor, represented by the solid and dashed curves.
[Palik, 1985]

phonon frequency (≈ 3 THz) for pump fluences below the threshold for
permanent damage.

Because Te is uniaxial, two independent elements of the dielectric
tensor must be measured to fully characterize the ultrafast material re-
sponse, as described in Ref. [Roeser et al., 2003]. Figure 9 shows the
excellent agreement between measured and literature values [Palik, 1985]
of both the ordinary and extraordinary dielectric functions. This agree-
ment not only validates the technique for uniaxial materials, it also shows
that no cumulative effects arise from operating in a configuration where
the sample is not translated between laser pulses.

The dynamics of εord(ω) are shown in Figure 10. Within the error of
the measurement, dielectric function values remain constant at all times
before the pump arrives. After excitation, the oscillatory behavior of the
optical properties indicate the presense of coherent phonons. A decaying
offset from the initial values, separate from the oscillation, represents
the relaxation of the equilibrium lattice spacing as electrons diffuse from
the probed region. In contrast to reflectivity-only studies of coherent
phonons in materials, the dielectric function data clearly indicate a shift
of absorption resonances to lower photon energies. The broad resonance
near 2 eV has moved to lower energies, as indicated by the shift in
the peak of Im[εord(ω)] and the zero of Re[εord(ω)]. The magnitude
and direction of the shift suggest that the lattice may be sufficiently
displaced at the peak of the phonon oscillation to cross the conduction
and valence bands, but that the short duration of the crossing could
prohibit any metallic character from emerging [A. M.-T. Kim et al.,
2003]. In addition, we observe larger changes in εord(ω) than in εext(ω),
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Figure 10. Dynamics of the ordinary dielectric function of Te for excitation with
a fluence of 120 J/m2. Both (a) the real part and (b) the imaginary part show
oscillatory behavior due the excitation of coherent phonons.

which may be attributed to the fact that the motion of the coherent
phonons is confined to the ab plane.

5. Summary
The availability of electronic transitions, the existence of vibrational

modes, and the dynamics of nuclei all influence the optical properties of
solids. The time-resolved dielectric function measured with this reflec-
tometry technique provides the most information of any linear optical
probe, revealing changes in the lattice bonding, carrier distribution, and
phase of a material. We avoid the necessity of assuming a particular
model of the material dynamics as well as the potential pitfalls of other
methods that measure changes in reflectivity at a single photon energy.

Notes
1. Although it seems obvious that transmission and absorption are determined by the

“bulk” properties of a solid, this is also true of reflection. While surface quality affects the
amount of scattered light, bulk properties determine the amount reflected. This is emphasized
in Eq. (8), where a driving term for the generated D field is the material polarization created
by the applied E field.
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2. It is apparent from the form of Eq. (10) that electron–electron, electron–phonon,
electron–hole, and other multibody interactions are not considered here.

3. The Hamiltonian of Eq. (10), while ignoring important contributions from multibody
interactions, captures many of the essential characteristics of semiconductor band structures.

4. Although the coupling term of the Hamiltonian in Eq. (10) is proportional to the field
A, the material properties experienced by the applied field depend on its direction rather than
its magnitude. Any field-strength dependence of the susceptibility results in a fundamentally
nonlinear system.

5. The dependence of the dielectric function on the JDOS (Eq. (12)) illustrates how the
essential distinction among band structures — their k-dependence — is lost in the summation.

6. We take the ions to be fixed in this derivation.

7. For completeness, the parameters of the fit to Te are ω1 = 2.37 eV, Γ1 = 1.28 eV,
f1 = 105 eV2, ω2 = 9.39 eV, Γ2 = 4.43 eV, f2 = 170 eV2, and an additive constant to
the real part of 3.66. The parameters of the fit to GaAs are ω1 = 3.18 eV, Γ1 = 0.75 eV,
f1 = 38.7 eV2, ω2 = 4.67 eV, Γ2 = 1.14 eV, f2 = 125 eV2, and an additive constant to the
real part of 1.85. The real additive constant arises from Kramers–Kronig-type contributions
from resonances outside the spectral range of the fit, as discussed in Section 1.3.

8. The real part varies significantly within a linewidth Γ of the resonance frequency ω0.

9. It is rarely the case that a pump pulse is intense enough to provide one photon for
every valence electron in the pumped volume of the solid.

10.This is also representative of the Born-Oppenheimer approximation, where the elec-
tronic quantum numbers are the so-called “fast variables” and the nuclear positions are the
“slow variables.”

11.For an anharmonic excited state potential, the ability to control the end products is
reduced, essentially because the projection of a spread nuclear wave function onto the ground
state potential can “split” the wave function between the two end products.

12.At densities of 1018 cm−3, carrier thermalization occurs within hundreds of femtosec-
onds [Becker et al., 1988]. Extrapolation of the results of Becker et al. [Becker et al., 1988]
to 1021 cm−3 gives a thermalization time on the order of 10 fs.

13. Immediately after photoexcitation, the excited electrons are distributed in the conduc-
tion band according to the pump spectrum.

14. In practice, the excitation of 15% of valence electrons to the conduction band is rarely
achieved in pump–probe experiments. Excitation of a few percent of valence electrons is both
more common and often sufficient to initiate phase transitions.

15.The “fundamental” frequency refers to the center or carrier frequency of the applied
E field.

16.Here and for the remainder of the discussion we ignore the polarization of the applied
E field.

17.Many details of phase-matching are omitted here because they are beyond the scope
of this article. See Refs. [Boyd, 2003] and [Yariv, 1989].

18.The ease of such a measurement makes it attractive, but it does not fully characterize
the temporal profile of the laser pulse [Trebino et al., 1997].

19.For self-focussing, and any other self-action effects, ω1 = ω2.

20.Literature values of ε(ω) for c-Ge0.06Sb0.94 are not available. The data presented
are measurements taken in our apparatus of a region of the sample that was permanently
crystallized by laser irradiation.
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(1991). Time-resolved second-harmonic study of femtosecond laser-induced disor-
dering of GaAs surfaces. Opt. Lett., 16:1013.

[Graves and Allen, 1998] Graves, J. S. and Allen, R. E. (1998). Response of GaAs to
fast intense laser pulses. Phys. Rev. B, 58:13627.

[Hase et al., 1996] Hase, M., Mizoguchi, K., Harima, H., Nakashima, S., Tani, M.,
Sakai, K., and Hangyo, M. (1996). Optical control of coherent optical phonons in
bismuth films. Appl. Phys. Lett., 69:2474.

[Haus, 1984] Haus, H. A. (1984). Waves and Fields in Optoelectronics. Prentice-Hall,
Englewood Cliffs, NJ, 1st edition.

[Heller, 1978] Heller, E. J. (1978). Quantum corrections to classical photodissociation
models. J. Chem. Phys., 68:2066.

[Heller, 1981] Heller, E. J. (1981). The semiclassical way to molecular spectroscopy.
Acc. Chem. Res., 14:368.

[Huang et al., 1998] Huang, L., Callan, J. P., Glezer, E. N., and Mazur, E. (1998).
GaAs under ultrafast excitation: Response of the dielectric function. Phys. Rev.
Lett., 80:185.

[Hunsche et al., 1995] Hunsche, S., Wienecke, K., Dekorsy, T., and Kurz, H. (1995).
Impulsive softening of coherent phonons in tellurium. Phys. Rev. Lett., 75:1815.
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