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ABSTRACT

These lectures are an introduction to current research into photo-induced chemical reactions at
metal surfaces. After an introduction to some qualitative quantum mechanics, we discuss the
electronic and optical properties of metals, beginning from an introductory level. The Drude
model is described in detail and then optical properties of matter are developed more
completely by introducing band structures. The physics governing adsorption of reactants at a
metal surface and other fundamental concepts in surface science are introduced. We describe
the interaction with a subpicosecond laser pulse with a metal surface in preparation for
discussion of some recent photochemistry experiments using subpicosecond laser pulses.
The experiments address the nature of the photo-excited electrons that are responsible for
chemical reaction of the adsorbates.

I. THE QUANTUM MECHANICS AND SPECTROSCOPY OF ATOMS

This section provides a brief overview of some fundamental concepts from quantum
mechanics which are relevant to spectroscopy and molecular dynamics. The emphasis is on
developing a physical interpretation of the Schrédinger equation. Introductions to quantum
mechanics that approach the subject in more detail through mathematical formalism[1] or by
following the historical development of the subject[2] are available.
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1. A. The Schrodinger equation

The justification for quantum mechanics is its agreement with experiment, and the
consistency and elegance of the mathematical formalism. Nevertheless, it is instructive to
provide a motivation based on classical mechanics. In classical mechanics the energy of a
particle in an external potential U(x) is

2
=g—+U(x), (1)
m

where p is the momentum and m is the mass of the particle. In quantum mechanics p and x are
interpreted as quantum mechanical operators. Let’s view x as proportional to an operator
which means multiply by the position and p as proportional to an operator which means take
the derivative with respect to x. These definitions are consistent with our intuition that the
momentum specifies the rate of change of position. When the transformation

p— —ihi )

dx

is applied to (1) the classical expression for the total energy is transformed into an operator
expression. This operator is called the Hamiltonian, H:
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The function that these operators act on is called the wavefunction, V. The result is the time-
independent Schrodinger equation:
HY =EY. @
There is also a time-dependent Schrodinger equation. The following expression
describes the time rate of change of the wavefunction in terms of the now time-dependent
Hamiltonian{1]
¥

HY =ih—. 5
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The time-dependent Schrodinger equation reduces to (4), the time-independent Schrodinger
equation if the potential energy is independent of time: U =U(x). To see this, write the
wavefunction, P, as a product of a time-dependent and a time-independent part:

(x,1) = ¥(x)6(r). ©)
Substituting (6) into (5), the equation separates into an expression with only spatial
dependence on the left side, and only time dependence on the right side:

n2 (1 d*w 1(dé
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Because the right side is a constant independent of x, the left side must also be independent of
x, and is therefore constant. Call the constant E.
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The symbol v? represents the second derivative with respect to x. The first equation is simply
the time-independent Schrodinger Equation 4 which justifies using the letter E for the
constant. The second equation has a trivial solution:

9(t)= Ce_iEt/h, (10)

What does this mean? In a time-independent potential, the time-dependence of the

wavefunction is simply a rotation of the (complex) phase of the wavefunction. The frequency
of this rotation is determined by the energy.

The product ‘I’(x,t)* W(x,t) is very important in quantum mechanics. Born interpreted it

as a probability density; the probability of finding a particle described by wavefunction
Y(7,t) within a volume element dF of 7 is

Y(7,1) V(7 1)dF. (11)
According to this interpretation, the wavefunction must be normalized to reflect the
requirement that the particle is certainly somewhere in space:

[W(F,0) (F.0)dF =1. (12)

The integral in Equation 12 is over all space. In the special case of a particle in a time-
independent potentlal Equation 10 contains all the time-dependence of the wavefunction. The
product ¥(x,7)" ¥(x,1) is constant in time and so the wavefunction is called a stationary state.

The interpretation of ¥(x, £)"W(x,t) as a probability density places constraints on ‘. It
must be single-valued. It may not be infinite (unless it is infinite in only an infinitesimally
small region of space). Furthermore, since the wavefunction is a solution of a second order
differential equation (the Schrodinger equation) it must be continuous. If the potential is not
too pathological then the first-derivative of ‘¥’ is also continuous.

I. B. Origin of energy quantization

Rewriting the Shrodinger equation, we see that it specifies the curvature of the
wavefunction:

Viy = z—h"i[u(x) -E]¥. (13)

Where U(x) = E the curvature of the wavefunction is zero. In other regions, the sign of the
curvature is determined by the signs of both ¥ and U(x) - E.

The meaning of the Schrodinger equation may be clarified by making qualitative sketches
of possible solutions to Equation 13, using the equation to specify the sign of the curvature of
Y. The left side of Figure 1 shows a potential energy surface and beneath it, two trial
wavefunctions of energy E which have the same value at x = x'. Between x' and x", both
wavefunctions have downward curvature because ¥'is positive, and E > U(x). Just beyond x",
¥ is still positive but E-U(x) changes sign. The curvature of both wavefunctions becomes
upward. The upward curvature causes ¥4 to diverge. Wave function ¥'g soon passes below
zero; Wp changes sign, the curvature again becomes downward, and the wavefunction
diverges downwards. Wavefunctions ¥4 and Wp are not acceptable because they are not
normalizable. A wavefunction (not shown) with slope at x’ between that of ¥4 and ¥p would
satisfy Equation 13 without diverging by tending to zero beyond x".

89



Ux) U

W(x)
A

Figure 1 Qualitative trial wavefunctions of energy E for two potentials. Wavefunctions
A, B and C are not acceptable because they diverge, and are not normalizable. D isa
correct wavefunction. Starting with a trial energy, slope and value at x', the second
derivative of the wavefunction is constrained by the Schrodinger equation. After [2].

The right side of Figure 1 demonstrates that a potential energy surface bounded on both
sides further constrains the wavefunctions. Two wavefunctions are sketched. Both tend
towards zero for positive x. However ‘¥ diverges on the left side. Wavefunction ‘¥p is
normalizable. It has finite extent in the x-direction and is called a bound-state wavefunction. It
turns out that normalizable wavefunctions exist only for special values of the energy: for most
values of E there are no corresponding normalizable wavefunctions. This energy quantization
is a consequence of the normalization condition. The values of the energy for which there is a
corresponding wavefunction are labeled by quantum numbers.

Figure 2 shows another potential energy surface. Wavefunctions in the well region below
E1 have discrete, quantized energies. Above Ej, however, normalizable wavefunctions exist for
all energies. We see in Section IV that molecules are bound to metal surfaces by interactions
similar to that sketched in Figure 2.

I. C. The hydrogen atom

Study of the hydrogen atom was very important for the development of quantum
mechanics because there was no classical explanation for the observed spectrum. It is still
studied because it is relatively simple, and has exact analytic solutions. Furthermore, we will
see that many other atoms (such as the alkali metals) have electronic levels similar to
hydrogen.

The potential energy describing the interaction of the hydrogen nucleus (a proton) with
an electron is:

e
Ulr)=- 4re, —r— (14)
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Figure 2 A potential energy surface with a region in which the energies are quantized
(the bound-state well), and a region in which all energies are permitted. After [2].

where r is the radial distance from the nucleus to the electron. This potential produces a
bounded well: we therefore expect quantized energies. Solution of the Schrédinger equation
confirms that the energy of the electron depends on the quantum number » according to:

1
E,=-E/—. (15)
n

The energy is defined in terms of the ionization energy, E; = 13.6 eV. The energies of the
electronic states of hydrogen are plotted in Figure 3.

The solutions of the Schrodinger equation for potential energy (14) and total energy (15)
factor into radial and angular terms:

¥(r.0,0) = Ry (1), m(6.9). (16)
The angular dependence is entirely in the term Y (6.9), called a spherical harmonic.[3] The
radial dependence is contained in R, ;(r),[3] plotted in the left side of Figure 4 for various
values of n = 0, 1, or 2. The radial distributions are usually expressed in terms of length scale

2
h
a=2B _os4a, a7
mge
known as the Bohr radius.
E
“s p d f
= EE =
n=3|— — —
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Figure 3 Energy levels of the hydrogen atom. The energies are independent of the values
of I (s,p,d,...). Each state may contain two electrons of opposite spin.
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Figure 4 Radial dependence of the wavefunctions of the hydrogen atom (left). The [ =
0 wavefunctions (the s-waves) are nonzero at the nucleus. The probability of finding
the electron at radius r/a scales as r2R? (right). The length scale a is the Bohr radius.
After [2].

The values of the quantum number / in Equation 16 are integers in the range 0..(n-1).
The values of / are represented with letters; s for [=0, p for /=1, dforl=2,fforl=3,withg
and subsequent letters used for the higher values of /. The parameter m is called the magnetic
quantum number. The values of m lie in the range -/ <m < .

The }Jrobability of finding the electron at radius r from the nucleus scales as
ran,,(r) dr. The right side of Figure 4 shows how r2R2 depends on r. When n = 1, the
electron is most likely found near r/a = 1, the Bohr radius. For n = 2 the radial distribution
depends on [: the I = 0 probability distribution has a lobe which is closer to the nucleus than
I = 1. A similar trend occurs for n = 3 where again the probability of finding the electron near
the nucleus is greatest for lowest values of 1.

According to Equation 15 and Figure 3, the energies of the electronic states of hydrogen
do not depend on I. We will see below that in multi-electron atoms the energies of the states
depend on [ and their relative energies can be predicted from the spatial distributions of the
wavefunctions.

It is possible to show using symmetry (and other) arguments that optical transitions
between states of the hydrogen atom are constrained to satisfy selection rules. For example, a
transition induced by an electric dipole interaction[3] between the atom and an external electric
field must satisfy Al = # 1. Transitions from s to p are allowed, but s to d is forbidden.
Restrictions on Am depend on the polarization of the light. There is no restriction on An.[2]

Figure 3 does not tell the whole story because it fails to represent the fine structure. The
fine structure is a deviation of the electronic levels sketched in Figure 3 on a scale of about
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104 times smaller than the ionization energy. Fine structure arises from several different
interactions, including relativistic effects due to the high speed of the electron, effects related
to the nonlocal distribution of the electron’s wavefunction, and an interaction between the
magnetic moment due to orbital motion of the electron around the nucleus with the magnetic
moment associated with the spin of the electron. This last interaction is called spin-orbit
coupling. When the magnetic moments of orbital and spin origin are parallel, the interaction
energy is higher than when they are antiparallel. This energy difference is the spin-orbit
coupling.[3]

A consequence of the spin-orbit coupling is that neither the orbital angular momentum
(1) nor the spin angular momentum (5 ) is constant. (In quantum mechanical language we say
that neither operator commutes with the Hamiltonian.) The sum,]’, however, is constant and
has two possible magnitudes depending on the relative orientations of [ and 5. Each value of
|T| is called a level. For example, if [ = 2, two levels are possible:

)= +3|=3/2 or 172. (18)
Each level has a different energy. The actual spectrum of hydrogen is also influenced by other
contributions to the fine structure (listed above) which have effects on the same scale as the
spin-orbit coupling.

There is also a hyperfine structure which is due to the spin of the proton. (The proton,
like the electron, is a spin 1/2 particle.) One of the ways it influences the electronic levels is by
interacting with the magnetic field caused by the motion of the electron. Hyperfine
interactions are on the order of 103 times smaller than fine-structure interactions.[3]

1. D. Multi-electron atoms

It is not possible to find exact solutions for the energies and wavefunctions of atoms with
two or more electrons. Interactions between electrons complicate the expression for the
potential energy of any one electron. An approximate solution is obtained by considering one
electron at a time and accounting for only an average interaction with the other electrons. The
other electrons are pictured as forming a cloud around the nucleus. From outside the cloud,
the rest of the atom appears to be a single positive charge because attraction to the Z charges
in the nucleus (where Z is the atomic number) is partially offset by repulsion from Z - 1
electrons in the cloud. The effective potential outside the cloud varies as

e2
Vegr (1) ~ P (19)
The electron outside the cloud is shielded from most of the nuclear charge. When the electron
penetrates the cloud, however, it interacts with all of the nuclear charge, Ze, without shielding
from the cloud. In this case the effective potential varies as
2
Vg (r) - 2= 20)
According to Equations 19 and 20, electrons with wavefunctions that extend to the core
experience a larger attraction to the nucleus and have a lower (more negative) energy than
orbitals that do not extend inside the cloud.

Figure 5 shows two hydrogen atom wavefunctions. For fixed n, wavefunctions with low [

penetrate towards the nucleus more than wavefunctions with higher . The low / wavefunctions
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Figure 5 The [ = 0 (s-orbital, bold) state extends closer to the nucleus (+ = 0) than the {
= | (p-orbital). When additional electrons form a shell around the nucleus, the penetration
of the s-orbital towards the nucleus causes it to have lower energy than the p-orbital.

interact more with the core than the high / wavefunctions. Consequently, in a multi-electron
atom, the n = 3, I = 0 energy, for example, is below the n = 3, = 1 energy. The influence of
the electron cloud is essential to this argument; in the single-electron atom the energy is
independent of [.

The energy level diagrams for hydrogen, lithium, and sodium are indicated below. In
lithium the shielding of the core causes the s, p, and d energies to be different. In sodium the
difference is so great that the 3d orbital is higher in energy than the 4s orbital.

Shielding is particularly effective for alkali metals such as lithium, sodium, and
potassium. Their outermost electron lies at a higher value of » than the rest of the electrons in
the atom. The lower-lying electrons form a closed shell, which means that they occupy all
states of lower n. A similar situation occurs for noble metals, such as copper, silver, and gold.
These metals have a single electron in an s-orbital and 10 electrons in (fully occupied) d-
orbitals. The fully-occupied d-orbitals tend to shield the outermost electron from the nucleus.
The alkali metals and the noble metals are together called monovalent metals because they
both have a single electron outside a shielded nucleus. Electrons that lie outside the closed
shell are called valence electrons.

f H ﬁ Li ENa
b s p d s p d s p d
e el
n= —_—— n=4J_/_ n=4

532543
n=3|— — — n=3 n=3

Figure 6 Energy level diagrams for the first few alkali metals. In hydrogen, the energy
levels are independent of /. In atoms with closed shells, states of high / have relatively
high energy compared with states of lower [ and the same 7. In sodium this effect is large
enough that the energy of the 3d state is higher than the energy of the 4s state.
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The approximate electronic state of an atom is stated by specifying its configuration.
Configuration is represented by nlf where i is the number of electrons occupying the orbital
with the values » and I. For example, 1s and 152 refer to configurations in whichthen=1,/=
0 orbital is singly (1s, as in ground state hydrogen) or doubly (1s2, as in ground state helium)
occupied. Excited state configurations may be represented with this notation: the
configuration of ground state oxygen, 1522522p4, becomes 1522522p33s following excitation
of an electron to 3s. Each s-orbital (I = 0) may contain two electrons corresponding to the two
spin states, and each p-orbital (/ = 1) may contain six electrons corresponding to two
electrons in each of the m = -1, 0, 1 states. The configuration only approximately gives the
electronic state of the atom because the notation does not account for details in the electronic
levels arising from the interactions between electrons in the atom. A more complete notation is
described after a brief discussion of the helium atom.

L. E. Helium atom

The simplest atom in which there are electron-electron interactions is helium. Helium is
not well described as a single electron bound to a nucleus with a screening cloud (as alkali
metals are described) because both electrons occupy the same orbital. The energy of each
electron is raised by Coulomb interactions with the other electron. Another complication is
exchange interaction which is a purely quantum mechanical contribution to the energy. It
arises from the laws of quantum mechanics applied to two indistinguishable objects.
According to a law of quantum mechanics, if the electrons in a two-electron wavefunction are
exchanged, there can be no change in the probability distribution, |‘i’|2 For example, the
wavefunctions representing one electron in an s-orbital and another in a p-orbital

Y7 = ¥, ()¥,(2) or, ¥y =¥, ()% (2), @

have different values of |‘I’|2 , even though the only difference between them is an exchange of
the roles of electrons labeled 1 and 2. Wavefunctions which are invariant under exchange of
the electrons may be constructed as follows:

¥, = %[\{ls(l)‘l‘p&)i ¥, (1)%(2)], (22)

If the indices 1 and 2 are exchanged, representing exchange of the two electrons, the value of
|‘P|2is unchanged. The wavefunctions W, and ‘¥_ have different energies. The energy
difference is called exchange splitting.

In classical mechanics, if two interacting bodies move under the influence of a central
potential (such as two planets orbiting a sun) the total angular momentum of the two bodies is
conserved. However, their mutual interaction exchanges angular momentum between them so
that the angular momentum of either body alone is not conserved. Similarly, in the quantum
mechanical description of an atom with two electrons, the angular momentum of a single
electron, J; or Iis not constant, but the total orbital angular momentum,

L=l +h, (23)
is constant. The quantum numbers corresponding to L are represented by the capital letters S,
P, D, etc. The total spin angular momentum,

S=5+5, 24
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2S+1{L}J

Figure 7 Standard atomic spectroscopy notation. The spectral term is represented inside
the brackets with a letter. The level is specified in the lower right corner. 25 + 1 in the
upper left specifies the multiplicity of the electronic spin states.

may be either 0 or 1, depending on whether the spins of the electrons are parallel or anti-
parallel. The values of L and S determine a spectral term.

If there were no interactions between the orbital angular momentum, L, and the spin
angular momentum, S, then (23) and (24) would be good operators to describe the atom.
However, as in the hydrogen atom, there are fine structure interactions which couple the
angular and spin momenta. The total angular momentum

J=L+3§, (25)
is conserved with fine structure interactions. There are 25 + 1 possible values for J which
together are called a multiplet. The quantity 2§ + 1 is called the multnpllcnty of the state. For
example, when S = 0 there is one possible value for J, determined by L. When S = 1, the
multiplicity is three. The S = 0 state is called a singlet, and the S = 1 state is called a triplet. A
particular value of J detcimines the level. Figure 7 shows the standard spectroscopic notation.
It specifies the term, the level, and the mulnpllcxty of the atom. For example, the electronic
ground state of helium is represented as SO

152,

3
=12x10%eV

- 5
=1x 10 eV

Figure 8 The energy level diagram for a two electron atom. Electrons in the 1s and 2p
orbitals combine with total angular momentum L = 1, a P-state. Two possible terms are
represented, corresponding to the two ways the spin angular momenta may combine:

S =0or S = 1. Their energies are different because of exchange splitting. Fine-structure
interactions cause the terms to split into levels corresponding to the 25 + 1 possible
values of J. After [3].

Figure 8 represents the energies of the possible levels in the 1s2p configuration. The
energy difference between the levels has been exaggerated. Figure 8 does not tell the whole
story. As in the hydrogen atom, an additional hyperfine splitting further complicates atomic
spectra. Hyperfine splitting is described in many text books.[3]

96



L. F. Chemical bonds

When atoms are close together, the electrons from different atoms interact and may form
chemical bonds. Attraction between the atoms causes the atoms in a molecule (or solid) to
have lower total energy than separate atoms. At close range the atoms repel each other,
preventing the molecule from collapsing. A potential energy surface which represents these
qualitative features of the interaction is sketched in Figure 9.

The total energy of the molecule depends on the motion of the nuclei such as vibrations
or rotations of the molecule and translation of the center of mass. While considering the
internal excitation of the molecule, we typically ignore the translational energy. The various
internal excitations evolve on very different timescales. Electronic motion occurs at about 1015
Hz. Vibrations occur at about 1013 Hz. Rotational motion is slower still at 107-10!! Hz. The
electronic part of the Schrodinger equation may be solved while assuming the nuclei are at
fixed locations because the electronic motion occurs so much more quickly than the nuclear
motions. With this Born-Oppenheimer approximation we write the wavefunction as a
separable function:

¥ =¥, (7, RN AN (Ry) = ¥, ¥, W, (26)
Here the nuclear wavefunction x is written as a product of vibrational, ¥, and rotational,
Y, components.

The strongest bond is the covalent bond, which is formed by an overlap of charge
distribution between neighboring atoms. The lowering of the total energy comes about
because electrons are shared between nuclei. Figure 10 schematically illustrates covalent
bonding between two atoms. If the two atoms get close enough for the atomic orbitals to
overlap, then the wavefunctions of these orbitals can add with either the same or opposite
phase. The two new orbitals have different energies. The lower level corresponds to the
wavefunctions adding in phase while the upper level corresponds to adding with opposite
phase. Electrons which occupy the symmetric state are concentrated primarily in between the
two nuclei; they draw both nuclei towards the center by coulomb attraction to the positive
charges on the nuclei. They are known as bonding orbitals. The electrons in the anti-
symmetric wavefunctions, however, have a low probability of being between the nuclei.
Electrons in these states tend to pull the molecule apart, and are called anti-bonding. If both of
the original electronic levels in each atom were singly occupied, then in the ground state of the
new system, the two electrons occupy the bonding orbital. Since this state is energetically

U(R)

IV

Figure 9 The qualitative form of the interaction potential between two nuclei in a
diatomic molecule. The potential energy is plotted against the separation of the nuclei.
The equilibrium separation of the nuclei is R,.
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Figure 10 Energy level splitting in a covalent bond between two atoms.

more favorable than the state in which the two atoms are separated, the sharing of the two
electrons results in a bond between the two atoms. In the case of a solid consisting of many
atoms, the bonding and antibonding levels broaden into bands. We return to the topic of
bands below.

The wavefunctions sketched in Figure 10 represent the combination of two s-orbitals. In
general, the combination of the orbitals is more complicated. If the combined orbital is
symmetric under rotation about the nuclear axis then the resulting bond is called a o-bond.

The bonding of two atoms is determined by the balance between the electrons in bonding
orbitals, and electrons in anti-bonding orbitals. For example, two hydrogen atoms (eachina
ground-state 1s! configuration) make Hy because each atom contributes one electron to a ¢
bonding orbital. The orbital may contain two electrons without violating the Pauli exclusion
principle because there are two available spins for each electron. Two He atoms, however, do
not form a bond because the initial 1s2 configuration of each atom would result in a molecule
with two electrons in a bonding orbital, and two electrons in an anti-bonding orbital, for no net
bonding.

The formation of diatomic oxygen, Oz, is more complicated because each atom has 4
valence electrons. Three electrons from each atom go into bonding orbitals: 2 in each of two 7
orbitals, and 2 in the o orbital. The remaining two electrons go into anti-bonding r* orbitals.
Overall there are 4 more electrons in bonding orbitals than anti-bonding. A full bond is
formed when two electrons occupy a bonding orbital. Molecular oxygen has four such
electrons, so O has a double bond.

I. G. Vibrations of diatomic molecules

We now consider the vibrational motion of the nuclei in a diatomic molecule. Figure 9
qualitatively illustrates the interaction between two atoms comprising a molecule. The
equilibrium separation of the atoms is R,. The vibrations are usually small with respect to the
internuclear separation, R. Writing the potential as a Taylor series expansion about the
equilibrium position R, in terms of Q= R-R,, wehave

2
U(Q)=U(0)+ (ﬂ) o+ l[%] 0% + anharmonic terms @7
ag),” 2\do* )
The anharmonic terms contain additional nonvanishing derivatives of U(Q). The first
derivative of U(Q) is zero at R,. Neglecting anharmonic contributions, the potential is
quadratic in Q:

L2 _(dU
U@ =k0 .k—(dgzl- (28)
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In classical mechanics, two atoms of mass m, and my, interacting with this potential vibrate
sinusoidally at frequency

1/2
o = (k/p)" (29)
where 1 is the reduced mass:
1.1.1 (30)
.u ma mb

The Schrodinger equation describes the wavefunction for two particles interacting by the
quadratic potential in Equation 28.

V2W+2Tm[E—%kQ2]‘P=O 31)
The solution is an energy spectrum with equally-spaced energy levels:

Ev=(v+%)hco, v=0,12,.... (32)

The wavefunctions are sketched in Figure 11. In the ground state the nuclei are most likely to
be found at separation Q=0, i.e., at their equilibrium separation, R=R,. At higher levels of
excitation the nuclei are most likely to be found at the limits of their oscillation (largest and
smallest R). In classical mechanics a simple harmonic oscillator spends most of its time at the
positions of greatest displacement where the velocity is lowest. The similarity of the quantum
mechanical and classical behaviors for high quantum numbers is known as the
correspondence principle.

The harmonic approximation is a good representation of the interaction potential at low
levels of excitation where the Taylor series (27) remains a good approximation to the actual
interaction potential. The harmonic approximation is particularly valuable because it has an
exact solution.

Another expression for the interaction potential which has an exact solution is the Morse
potential[4]:

U(Q) = De(l - e'“Q)z. (33)

This is the function sketched in Figure 9; it increases rapidly at small separation and

1 > Q

Figure 11 Squares of the wavefunctions of the harmonic oscillator (offset for clarity). At
successively higher vibrational excitations (higher v), the nuclei are more and more likely
to be found at large separation, in agreement with a classical harmonic oscillator.
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disappears at large separation. The energies of the bound states in a Morse potential are

E, = (v +l)hw —(v+ —l—)zhmx
v = 2 2 . (34)

The constant x depends on D, and c. The second term is a correction to the energy of a
harmonic oscillator (32). We stress that Equations 32 and 34 are the just the energies of states
of the artificial potential energy surfaces (28, 33) used in these calculations. Real molecular
spectra depend on the actual interaction potential between the atoms.

I. H. Electronic transitions in diatomic molecules

Electronic transitions are often depicted in potential energy versus nuclear separation
diagrams such as Figure 12. The Figure shows an electronic ground state potential energy
surface, X, and the potential energy surface corresponding to an excited electronic state, A In
this example, the excited state A has a minimum at larger R than the ground state. An arrow
represents a transition from X—A. The transition is vertical in this diagram because electronic
transitions occur much faster than nuclear motion, R.

The most probable transitions are between vibrational states with probability maxima at
the same R. This is called the Frank-Condon principle. At high levels of vibrational excitation,
the molecule is most likely to be found towards the limits of the oscillation, while in the
ground state the probability distribution is concentrated near R = R, (Figure 11). The vertical
transition in Figure 12 satisfies the Frank-Condon principle because it is a transition from the
equilibrium position in the ground state to an extreme limit of motion in an excited
(vibrational) state.

Spectra of molecules are further complicated by rotational excitations. Transitions
between rotational states lie in the microwave region of the spectrum, transitions between
vibrational states lie in the infrared region of the spectrum, and electronic transitions span the
range from infrared through visible to the ultraviolet.

Additional details to this brief introduction are provided below as some of the concepts
are applied to the study of chemical reaction of adsorbates at metal surfaces.

[
>

Figure 12 A transition between the electronic ground state of a molecule, X, and an
excited electronic state, A. The displacement of these (hypothetical) potential energy
surfaces ensures that the ground state wavefunction overlaps well with an excited
vibrational state wavefunction. The transition shown satisfies the Frank-Condon
principle.
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II. OPTICAL PROPERTIES OF SOLIDS

Here we introduce some of the concepts that are relevant to understanding how light
interacts with solids. A simple and very powerful model for the behavior of electrons in a
solid is introduced, elucidating many optical properties of materials.

II. A. Propagation of electromagnetic waves in vacuum

In vacuum the frequency f and the wavelength A of an electromagnetic wave are related
by the speed c of light in vacuum,

fA=c. 35)
This yields a linear relation between the angular frequency @ = 27f and the wavevector
k= 27!.'/ A:

w=ck. 36)
In a medium, the propagation of an electromagnetic wave is determined by the response of the
material to electric and magnetic fields and is characterized by the dielectric constant &, the
magnetic permeability 4, and the electric conductivity o. Except for the magnetic permeability,
which is nearly frequency independent at optical frequencies, the response of the medium
depends on the frequency of the incident wave, and so dispersion occurs: waves of different
frequencies propagate at different speeds. The frequency-dependent speed v of light in a
medium is given by

4 c

" Ree@) n@)’

where &) is the frequency-dependent dielectric function and n(®) the index of refraction of
the medium. This frequency dependence results in a nonlinear relation between the angular
frequency and the wavevector of the electromagnetic wave:

(37

C

W=—r—=0=F
Re+e(®)

Equation 38 is an example of a dispersion relation. It relates photon energy E = A to
wavevector. Figure 13 shows the dispersion relations, and the relationships between dielectric
function and angular frequency, in vacuum and in a medium. Throughout this part of the
lectures we use similar graphs to represent the optical properties of materials. The questions
addressed are: why do different materials have different optical and electronic properties and
what fundamental properties of solids are responsible for this behavior?

(38)

II. B. Propagation of electromagnetic waves through a medium

The electromagnetic response of a material varies over the frequency spectrum because
the charges present in the material respond at widely different frequencies. Roughly speaking,
we can subdivide the charges into the following categories: ionic cores (the nuclei and core
electrons at each lattice site), valence electrons, and free electrons. The ionic cores can form
dipoles that tend to orient themselves along the direction of the applied external fields. This
motion is usually limited to low frequencies and therefore only contributes to the polarization
— and hence the propagation of the wave — at frequencies in the microwave region and
below (see Figure 14). At higher frequencies the dipoles can no longer follow the rapid
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Figure 13 Dielectric function and energy-wavevector relationships in vacuum (top) and
in a medium (bottom).

oscillation of the applied field and their contribution to the dielectric constant vanishes. Lattice
vibrations (displacement of the ionic cores) induced by the applied field contribute at
frequencies up to the infrared region of the electromagnetic spectrum. In the visible and
ultraviolet regions only the response of the free and bound valence electrons remain. Core
electrons contribute at high frequency (10-1000 eV), but unless absorptions occur their
contributions to the polarizability are generally small and therefore the dielectric constant is
close to 1 for x-rays. The dielectric function in Figure 14 is very schematic — real materials
generally show more structure and, depending on the type and number of charges present,
some of the features shown may not be there.

Let us begin by analyzing the motion of a bound valence electron in response to an
external driving field. If the field oscillates at frequency @, the electron oscillates at the same
frequency with the phase and the amplitude of the oscillation determined by the binding and
damping forces on the electron. The oscillation is described by the equation of motion of the
electron:[5]

2
m%:—mw%x—my-d—x—eE. 39
dt dt
The first term on the right hand side of the equation represents a binding force with spring
constant k = ma)g, where m and @, are the mass and the resonant frequency of the bound
electron, respectively. The second term is a velocity-dependent damping force and the third
term is the driving force with E the applied field. Rearranging terms and assuming a
sinusoidally varying applied field of amplitude E, and frequency @, we obtain an
inhomogeneous second-order differential equation
2
m 2 b my Py ot = —eEoe™. (40)
dr* dt
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Figure 14 Schematic illustration of the various contributions to the dielectric constant
across the electromagnetic spectrum.

The steady-state solution of this equation, representing the oscillating motion of the electron,
must be of the form

x(t) = x e, 41)
Substituting this into Equation 40, we get for the amplitude of the motion
e 1
Xo=—m———F————L, (42)

m (w2 - w?) - iyw

As is to be expected, the amplitude of the electrons is maximal when the driving frequency is
equal to the resonance frequency. The motion of the electron results in an oscillating dipole

moment

2
e 1
P =-ex(t)=|— I N
m ) (wg - o) —iyw
In a sample with many bound electrons, the dipole moments of all the electrons
contribute to a polarization

Ne? fi —iax
P(t) = E
(® ( = ]? (wjg I iy,0 of (44)

Eje ™ (43)

where N is the total number of electrons, and fj is the fraction of electrons having a resonant
frequency wj;and damping constant %. In quantum mechanical terms, the factor Nf i is the
oscillator strength. This factor indicates how much each resonance contributes to the
polarization.

- The relation between the polarization P and the electric field E is usually written as
P(t) = €51, E(1), with g, the dielectric susceptibility, and E(r) = Ege ™. The dielectric
constant is given by £(@) =1+ g,, so that

2 ,
) =1+ 2 j;’ =€'() +ie"(w), 45
£ " (@) - 07) iy ;0
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Figure 15 shows the frequency dependence of the dielectric constant for a single resonance
and the resulting E(k)-behavior. At resonance, dissipation of energy is maximized since the
amplitude of the electron motion is maximized. This dissipation of electromagnetic energy is
what we call absorption and is reflected by the peak in the imaginary part of the dielectric
constant at the resonance frequency. Note, also, that the real part crosses through zero near the
resonance.

Let us next turn to the response of free electrons to an oscillating electromagnetic wave.
Setting the binding force in Equation 40 to zero we get

d 2.’)6 dx —iot
m——+my— = —eE.e 46
Again, we obtain a solution of oscillating form,
e 1 )
x(D) = e Boe ™, @)
m o +iyw

but because there is no binding term, the motion does not exhibit any resonances. At low
frequency, @/y << 1, the applied electric field induces a time-varying current

dx _Ne’ 1
i~ m Y —iw
where N is the number of free electrons and o the conductivity.

At high frequency the current can no longer keep up with the driving field and we may no
longer ignore the imaginary part of the conductivity. Let us therefore again consider the
oscillating dipole moment created by each electron:

2
T =% - _pe E =~ N 5 = 0B, 48)
at my

€2 1 -
p() =—ex(t) =~ —|———Eqe . (49)
m )" +iyw
For a sample with N free electrons, the polarization is
Ne? 1
P(t)=-| — —Z——E(t) = g, X E(1) (50)
m o +iyw ’
£
4
e"
e
w
@
k= w/v

Figure 15 Frequency dependence of the dielectric function near a resonance (left) and the
resulting relation between energy and wavevector (right). The shaded region indicates the
range of values for which electromagnetic waves are strongly attenuated and do not
propagate.
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Figure 16 Dielectric function and E(k) behavior for a plasma of free electrons with zero
damping. The shaded region corresponds to a forbidden band of frequencies.
Electromagnetic waves within this region are strongly attenuated.

From this expression we obtain the free-electron contribution to the dielectric constant:

2
N 1
gw)=1-| = ——— = €' (w) +ie"(w). (51)
mes ) w” +iyw

If the damping is negligible, ¥ << w, the imaginary part of the free-electron contribution

vanishes, and the real part becomes

2 @
e =1-% —155 -2, (52)
me, g 0]

where @), is called the plasma frequency. For frequencies below the plasma frequency, the
dielectric constant is negative and so the index of refraction is purely imaginary resulting in
strong attenuation of the electromagnetic wave (see Figure 16). In the E(k)-plot this
attenuation gives rise to a range of ‘forbidden frequencies’, or frequency gap below the
plasma frequency. In this regime, however, the reflectivity is nearly one and incident
electromagnetic waves do not penetrate into the plasma. Above the frequency gap the
electromagnetic wave propagates through the medium and at high frequency the dielectric
function approaches unity. The free electrons thus act like a high-pass filter: below the plasma
frequency reflection occurs; above the plasma frequency the free electrons are transparent.
For intrinsic semiconductors, the plasma frequency lies in the microwave or infrared part of
the electromagnetic spectrum. Metals reflect visible light because their plasma frequency is
higher than visible optical frequencies.

The effect of small, but nonzero damping is illustrated in Figure 17. The damping results
in a nonzero imaginary part at low frequency and a reduction of the frequency gap in the E(k)-
plot. At high frequency the real part still approaches unity and the imaginary part vanishes.

II. C. Nonlinear optical interactions

Next we consider the nonlinear optical properties of materials. In the presence of an
electric field E(z), atoms in a solid become polarized giving rise to a polarization of the solid.
For small electric fields, the induced polarization is linear in the applied field:

P =xVED, (53)
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Figure 17 Dielectric function and E(k) behavior for a plasma of free electrons with
small nonzero damping. Damping reduces the forbidden band of frequencies.

with x(1) the linear susceptibility. For large applied fields, however, the induced polarization
becomes nonlinear in the applied field[6]:

Py= 2 B0+ xPE 0+ y VB D)+ .

=PV + PP+ POty + ..
The first term represents the linear polarization, P(® the n-th order polarization, and 3 the n-
th order nonlinear optical susceptibility. In general, the n-th order nonlinear susceptibility is
not a scalar, but a tensor of rank (n + 1). For typical materials the electric field has to be of the
order of atomic field strengths E,, before the second-order term becomes comparable to the
linear term:

(54)

)
oo At (55)

E'
The nonlinear polarization can drive a new field. According to the wave equation that
follows from the Maxwell equations, we have([6]
n? 9*E _4r a*pM
ot ot
The second-order polarization, for instance, causes a driving term proportional to the square
of the applied electric field, resulting in a new field at twice the applied frequency.
Consider an electron in the interstitial region between four atoms, as shown in Figure
18a. Physically, the doubling of the frequency comes about because the charges move along a
curved potential plane. For an electric field oscillating in the plane of the drawing, the electron
moves along the dotted arc; in addition to being displaced in the horizontal direction, the
electron also undergoes a small vertical displacement. This vertical displacement gives rise to a
small second-order dipole moment perpendicular to the horizontal first-order dipole moment.
As Figure 18b shows, the period of oscillation of the second-order dipole moment is half that
of the first-order dipole moment.
For systems with inversion symmetry, however, the second-order susceptibility vanishes.
This can readily be seen by writing the second term of Equation 54 in tensorial form:

V2E (56)

P? =42 . EE, (57)
Applying inversion, we get

P =y?: (-E)-B), (58)
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and from Equations 57 and 58 we see that x(z) = —x(z), which can only be satisfied if
(2) _
x ' =0.
For systems that do not have inversion symmetry, x(z) is not zero and an intense field
causes a second-order polarization. Let the applied field be of the form
E@® =1 E' +cc.
(1) = Ee c.c (59)
The second-order polarization is then

P? = Z(Z)Ez(t) = % X(Z)EE* + %{ ;1((2)E2e'"2“’r + c.c.}_ (60)
The second term on the right-hand side oscillates at frequency 2@ and can drive a new
electromagnetic wave at double the incident frequency. This process is called second-
harmonic generation.
If two oscillating fields of different frequency are present,

E@W =1 Ee + 1B’ +cc, (61)

the second-order polarization contains terms at frequencies 2a;, 2, at the sum-frequency
wy+an, at the difference frequency w)—-ay, and at zero frequency. Because of dispersion, the
output beam at these new frequencies and the input beams at @) and w, travel at different
velocities. To maximize output at any of the new frequencies it is therefore necessary to
geometrically match the phases of the input and output beams.[6]

Let us next briefly turn to the third-order polarization which ‘mixes’ four electric
fields — three input fields generate one new output field. When three different input
frequencies are present, 13 new frequencies can be generated. An example of a third-order
effect is coherent anti-Stokes Raman spectroscopy (CARS). Two of the input frequencies are
chosen such that their difference matches a resonant frequency in the system:

t 0 /2 T 37/2
E . _— . -—
e JUE Ty el T DY JPEETNN

p N . .
P(l) . — . . —— e
P® . t . t

(b)

Figure 18 (a) An electron in the interstitial region between four atoms oscillates along a curved
equipotential plane. (b) This oscillation causes a small second-order dipole in a direction
perpendicular to the first-order dipole. The period of oscillation of the second-order dipole is one-
half that of the first-order one.
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o) — Wy = W, The beating between the two input beams then coherently populates the
upper level of the resonance. A third beam at frequency @3 then beats with the resonant
oscillation in the system, generating a fourth beam at the anti-Stokes Raman frequency
w, = @ — 0, + 3. Note that this process is parametric, i.e., the initial and final state is the
same. The intensity of the coherent anti-Stokes beam is proportional to the population
difference between the lower and upper levels of the resonance.[6] Hence, CARS can be used
to measure population distributions.
Applications of nonlinear spectroscopy are summarized schematically in Figure 19.

IIL. ELECTRONIC AND VIBRATIONAL STATES OF SOLIDS

The atoms in a metal or semiconductor form an approximately regular three-dimensional
pattern. Common arrangements of the atoms include face centered cubic (FCC) and body
centered cubic (BCC), depicted in Figure 20, though many others are also common.[7] The
energies of the states occupied by valence electrons depend on the arrangements of the atoms
because valence electrons from neighboring atoms interact. The states of the valence electrons
determine many properties of solids.

Iy C i .
Reflectivity ﬁ Deter(nlne dleleptrlc function,
VA material properties
«
Second harmonic generation 20 Probe symmetry of surfacs,
. vibrational or electronic modes

Probe luminescence,

oo vibrational or electronic modes

Sum frequency generation

=

Probe IR resonances

I

Sum frequency generation

!

Raman Probe vibrational resonances

CARS

ENERY

20,-0, Probe phonon resonances

|

Figure 19 Schematic representation of some optical probes and their most important
applications. Many phenomena can be studied with several different optical techniques.
For example, vibrations can be studied with sum frequency generation, Raman scattering,
and coherent anti-stokes Raman spectroscopy (CARS).
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Figure 20 The face centered cubic (FCC, left) and body centered cubic (BCC, right)
crystal structures. Not all the atoms are visible. The actual crystal is comprised of many
of these cubes packed next to each other so that the atoms in the corners are shared by
eight different cubes.

The wavefunction of an electron in a crystal is determined by the Schrodinger Equation 8
with U(7) representing the potential of the charges in all the atoms. The equation cannot be
solved analytically unless the real U(7) is replaced with a simple function. Here we consider
simple models to obtain a qualitative understanding of electronic states of solids.

II1. A. Free electron states

We begin by considering free electrons for which U(7) = 0. In the free electron model
the Schrddinger equation yields a parabolic relationship between kinetic energy and
momentum:

2
{2 62)
2m

This equation is called a dispersion relation; it relates the energy of the electron to its
momentum. The momentum of the free electron can take on any positive value, and hence the
energy of the electron can be anywhere from zero to infinity. Equation 62 is represented in
Figure 21 for a one dimensional crystal.

When U(F) is not zero, a theorem known as Bloch’s theorem constrains the electronic
wavefunction. The theorem applies to electronic states in a periodic potential U(7) where

U(F +R)=U(F) (63)
for all 7. The vectors R which satisfy (63) are called lattice vectors. Bloch’s theorem states
that when (63) is satisfied there exists a vector k such that

¥(F +R) = e Rp(p). (64)
This equation says that between points in the crystal separated by a lattice vector R, only the

(complex) phase of the wavefunction may change. Wavefunctions in a periodic potential
satisfy (64) and are called Bloch wavefunctions.[7, 8]

D

Figure 21 The parabolic dependence of energy on momentum for a free electron.
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The quantity hk is known as the crystal momentum. There are special values of the
crystal momentum called reciprocal lattice vectors, K, that satisfy

R-K=2m, B (65)
where n is an integer. We may write a general k’in terms of K :
k'=k+K. (66)

When this expression is substituted into (64), the definition (65) ensures that the factor
containing K is 1:

(7 +R) = & R ()

_ et(k+K)-R\P #) (67)
= e Ry (F)

Equation 67 is the same as Equation 64. Therefore, two crystal momenta, k’ and k, which

differ by a reciprocal lattice vector, K, place the same constraints on the Bloch wavefunction.

We therefore restrict attention to a small set of £ values called the first Brillouin zone,

comprised of those & whose magnitude cannot be made smaller by addition of a reciprocal

lattice vector.

Bands are typically drawn only within the first Brillouin zone. Figure 22 shows an
example in one dimension. The wave vectors k’ and % differ by a reciprocal lattice vector of
length 2nt/a. The horizontal arrows represent translations of the bands back into the first
Brillouin zone. This representation is called the reduced zone scheme.

In a real crystal, the first Brillouin zone has a three-dimensional shape that reflects the
symmetry of the real three-dimensional crystal lattice. Figure 23 depicts the first Brillouin
zone of a FCC crystal. Conventional labels for points of high symmetry on the surface are
indicated. There are many points on the surface that are equivalent to the labeled points
because of the symmetry of the first Brillouin zone (and the crystal). The center of the
polygon, k = 0, is known as the I-point.

In a three-dimensional crystal, the k are three-dimensional and a graph of the band
structure can no longer represent the states at all k . Instead, the bands are shown along
particular directions in k -space. Figure 24 shows the band structure for free electrons in a
FCC lattice in the directions of highest symmetry. The horizontal axis uses labels defined in
Figure 23. Some locations in k-space (such as the T'-point) are represented more than once.
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Figure 22 Wavevectors which differ by a reciprocal lattice vector (such as k and k°) are
physically equivalent. This motivates translating (represented by the horizontal arrows)
the portions of the band that lie beyond 21/a to produce a reduced zone representation.
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Figure 23 The first Brillouin zone of a FCC crystal. This is a figure drawn in three-
dimensional k-space. The origin, k = 0, is located at the center of the polygon and is
called the I'-point. Other points of high symmetry on the outer surface of the figure are
labeled with letters as shown.

For example, the band structure is represented along three different paths from the I'-point to
the edge of the Brillouin zone: I'&X, 'L, and T'oK.

At the I'-point, for energies near E = 0, the bands in Figure 24 have the quadratic
dependence of Equation 62. When the bands reach the first Brillouin zone boundary (at X, L,
or K for example), they are translated back into the first Brillouin zone, producing an apparent
reflection of the parabolic shapes about the X, L, and K points. This reflection is analogous to
that sketched in Figure 22 for a one-dimensional crystal.

The shape of the parabola depends on the particular path chosen in k-space. According to
the dispersion relation (62), the energy of free-electron states depends on the square of the
magnitude of k . This fact explains the kink in the graph at L between I" and W: the distance
from the I'-point increases more quickly between I'" and L than between L and W, as apparent
in Figure 23. Throughout Figure 24, the bands reflect the dispersion relation for free electrons
and the geometry of the first Brillouin zone.

The bands are not necessarily occupied with electrons. They cannot all be filled because
the number of electrons in the crystal is finite, whereas there are infinite states available in the
band structure. The probability that a state of energy E is occupied is given by the Fermi-
Dirac function,[7]

Energy

r Xw L r K X
k-space

Figure 24 Free electron states for a FCC crystal. The states are plotted against

representative directions in k-space. High symmetry positions in k-space are labeled with
letters defined in Figure 23.
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Figure 25 The Fermi-Dirac function at T=0 (dashed line) and T = 0.1EF (solid line).
The transition between f{E) = 1 and f{E) = 0 occurs over an energy range of
approximately 2kpT.

1
)= eyt ,

where EF is the Fermi energy, kp is the Boltzmann constant, and T is the electron temperature.
At T = 0, the Fermi-Dirac function is a step function: states below the Fermi energy are
occupied and states above the Fermi energy are empty. At real temperatures the transition is
smoother, as depicted in Figure 25. A Fermi-Dirac distribution is valid only when the
electrons are in thermal equilibrium and temperature is well-defined.[8] Electrons out of
thermal equilibrium are considered in the section on electron-electron scattering below.

In this section we have applied Bloch’s theorem to determine how the symmetry of the
crystal governs the electronic band structure. We have also assumed that the electrons are free,
U(7) = 0. These assumptions are, strictly speaking inconsistent. We see below, however, that
when U(F) is small but nonzero, the band structure resembles the free electron band
structure. An excellent approximation of the band structure is obtained by applying only our
knowledge of the symmetry of the crystal potential, (63) ignoring any interaction of electrons
with the lattice.

(68)

111. B. Beyond free electron states

In a real crystal the electrons interact with the periodic potential of the lattice. The
simplest band structures occur in metals where U(F) is small. Recall that monovalent metals
have a single electron outside a filled shell (or a filled sub-shell, such as Cu) and that this
electron is shielded from the nucleus by its interactions with the other electrons. The shielding
leads to relatively weak interactions with the lattice and small U (7)compared to other crystals.
We expect the band structure of monovalent metals such as K and Cu to be approximately the
band structure of free electrons.

Figure 26 is a graph of the solution to the Schrodinger equation obtained from
perturbation theory[1] with the weak periodic potential U(7). The influence of the interactions
with the lattice is to segment and distort the free-particle solution (Figure 22). The distortion
occurs near the Brillouin zone boundary; in other regions the bands remain parabolic. Alkali
metals have bands which are very similar to Figure 26.

In other metals, there are often bands with free-electron character. For example, the bands
of aluminum (configuration [Ne} 3s23p!) depicted in Figure 27 are very similar to free
electron bands. Copper, with configuration [Ar] 3d104s!, has a more complicated band
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Figure 26 A periodic potential in one dimension (leff) and the corresponding bands
(right).

structure. The band structure of copper in Figure 28 has both horizontal and parabolic bands.
The roughly horizontal bands arise from electrons in d-orbitals. The bands are horizontal
because d-orbital electrons from one atom interact strongly with neighboring atoms, as
expected from the graph of the spatial distribution of d-orbitals in Figures 3 and 5. The
roughly parabolic bands in Figure 28 arise from the electrons in s-orbitals. The s-orbital
electrons interact less with the lattice than the d-orbitals because of the small radial extent of s-
orbitals. The parabolic bands in Figure 28 are similar to the free electron bands in Figure 24.

-
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Figure 27 The band structure of aluminum has a lot of the parabolic character of free-
electron bands. The dashed lines indicate the free electron bands. After [9]
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Figure 28 The calculated band structure of copper in a portion of k-space. Both
parabolic free-electron-like bands and roughly horizontal d-bands are present. After
[10].
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Figure 29 The calculated (solid lines) band structure of platinum. The dashed lines
indicate the free electron bands for an FCC crystal, After [11]

The band structures of d-band metals share a number of features. Compare, for example,
the band structure of copper in Figure 28 with the band structure of platinum shown in Figure
29. At low energy near the I-points, the quasi-free electron bands are similar because they are
both FCC crystals. The Fermi levels of platinum and copper are at different locations with
respect to the bands. In platinum (with configuration [Xe] 4/145d 10650 the Fermi level is in
the horizontal d-bands, while in copper the Fermi level lies in the parabolic s-bands.

II1. C. The dielectric function of metals

In section ILB, we studied the relationship between the energy (or frequency) of an
electromagnetic wave propagating in a material, and the dielectric function, &(w)of the
material. We derived the dielectric function for a material in which the electrons act as simple
harmonic oscillators. Here we use that model to explain some features of the measured
dielectric function of alkali metals, Figure 30. Additional features can be explained using the
band structure of the alkali metals, Figure 31. More detailed structure of £(@) can be
predicted from the band structure than from the simple harmonic oscillator model because the
band structure is a more complete description of the electronic states in the crystal lattice.

The interaction of light with the electrons in a material is represented by transition of
electrons from occupied to unoccupied states in the band structure. According to the Fermi-
Dirac function, Equation 68, unless the temperature is very high, occupied states are below the
Fermi level, and unoccupied states are mostly above the Fermi level. If the initial and final
states of the electron are in the same band, the transition is intraband. If the transition is from
one band to another, the transition is interband. In both cases, the transition is from below the
Fermi level to above the Fermi level.

In both intraband and interband transitions, the crystal momentum is conserved. When
the crystal momentum of the electron changes, as it must in an intraband transition, one or
more other bodies must have an opposite change in crystal momentum. The photon does not
contribute to conservation of crystal momentum because photons have negligible momentum.
Phonons, on the other hand, do have crystal momentum, and intraband transitions are usually
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Figure 30 The experimentally determined imaginary parts of the diclectric function for the
alkali metals. They are similar because the band structures are similar. After [8]

accompanied by excitation of a phonon. The total change in crystal momentum of the phonon
and the electron is zero. Phonons are discussed in section IILE.

Intraband transitions are responsible for the decrease in £(w) with increasing frequency
in Figure 30. According to Figure 31, low energy excitation of electrons near the Fermi level
occur in an approximately parabolic band. From Figure 21, we know that electrons in
parabolic bands behave as free electrons, and from Figure 17 from section II.B, we know that
in a material with free electrons the imaginary part of the dielectric function drops with
increasing frequency. The dielectric function of alkali metals is similar to the dielectric
function of free electrons because the band structure is nearly parabolic near the Fermi level.

The dielectric functions in Figure 30 do not monotonically decrease. The increase in
g(w) is attributed to the onset of interband transitions at energies sufficient to excited
electrons across the gap between bands. The lowest energy interband transition (at constant
crystal momentum) is shown in Figure 31. There are no transitions right at the Brillouin zone
boundary because there are no electrons at the N-point: the Fermi level is below the energy at
the N-point. The length of the arrow is about 0.65 Er. The onset of interband transitions
accounts for the rise in €(w) in Figure 30 near 0.65 EFr.

Figure 32 shows the measured real and the imaginary parts of the dielectric function of
platinum.[12] Overa]l, &(w) falls with increasing energy—the expected free electron
contribution to £(w) . The structure at about 0.8 eV, is attributed to the onset of interband
transitions near the X point in the platinum band structure, Figure 29.[13]

E
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r N;k

Figure 31 The band structure of an alkali metal, with an interband transition indicated. In
an intraband transition (not shown) the initial and final states of the electron lie in the
same band. After [8]
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Figure 32 The dielectric function of platinum. The features at about 3/4 eV can be
attributed to the band structure. Data from [12].

II1. D. Electron-electron scattering

The electrons in a material do not necessarily have a distribution of energies described by
the Fermi-Dirac equation. During absorption of light, for example, electrons acquire energies
far in excess of kgT. This energy is partitioned among all the electrons by collisions between
electrons, until the distribution of electron energies is a Fermi-Dirac distribution. Fermi liquid
theory predicts the rate at which a single electron excited above the Fermi level collides with
another electron. One of the aims of the model is to predict the rate at which the excited
electron scatters with other electrons. ’

Consider the collision of an excited electron of crystal momentum k; with an electron of
crystal momentum Ez, depicted in Figure 33. The scattering rate depends on the probability of
finding an _c‘:l,ectron_o’f momentum kj, and also on the probability that there are empty states of
momenta k; and k, . In Fermi liquid theory it is assumed that, except for the single excited
electron in question, the distribution of electron energies is described by the Fermi-Dirac
function, Equation 68. With this assumption we can write the scattering rate as:

L ok c. ”

— o R ()1 £(®). (69)

This is the scattering rate for a particular k; and ky . The scattering rate into all possible final
states k; and ky depends on the total number of available states for k; and k; .

We estimate the number of available states when the temperature is zero Kelvin. The

calculation begins with some observations about the relative energies of the electrons before
and after the collision. Figure 25 implies that the final states k; and kp must satisfy

Figure 33 A binary collision between two electrons.
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E El > FEr and E k2 > Er because all the available (empty) states are above the Fermi
level. The figure also implies that E(k2) < Ef because the electron k2 must begin in an
occupled state. Since the collision increases the energy of the electron ky, the energy of the
electron k; must decrease to conserve energy: Egkl < E(kl) By a similar argument, the final
energy of the electron k, must be less than the’initial energy of the excited electron:
E(Ej?f E(kl) Both electrons end up with energies between Ep and E(k )
The number of available states between Ep and E(kl) is proportional to ‘kll—lkp|

Substituting this expression into (69) gives a scattering rate:

= - n2

~o< (|- [&)” (70)
This expression is valid when T = 0 and the initially excited electron El is near the Fermi
level. Equation 70 shows that the lifetime of an electron becomes very large as the electron
gets close to the Fermi level. Calculations of the scattering rate give electron-electron
scattering times of 10 fs for an electron which lies 2 eV above the Fermi surface, and 1 ps for
an electron which lies 0.2 eV above the Fermi surface. Equation 70 is often stated in terms of
energy:

- 2
%x[E(kl)—Ep] : an
Equations 70 and 71 are equivalent for energies close to the Fermi level.

At small (nonzero) temperatures the total number of states available for the electrons to
scatter to depends on temperature. To calculate the scattering rate, we note that Figure 25
shows that the Fermi-Dirac distribution changes from 1 to O over a range of energies of order
kgT . If the target electron is to scatter into an available (empty) state, it must have an initial
energy within the range kgT of Ep. Similarly, the number of available states scales as kgT'.
Once the initial and final energies of the target electron are specified E(El') is known because
of energy conservation. The scattering rate depends the square of the temperature:

1 2
— o< (kpT)", (72)
In practice, the scattering of electrons with energy close to Ey is dominated by scattering with

phonons (see below) or impurities, and the quadratic dependence of scattering rate on
temperature is not observed.[8]

I11. E. Phonons

In the previous two sections we assumed the ionic lattice to be fixed and immobile. In
this section we consider collective motions of the ions. The ions can be displaced from their
equilibrium positions and such disturbances can travel through the solid in the form of
phonons which play an important role in the electronic and optical properties of solids
because they can interact directly with electromagnetic waves.

Let us begin by considering a linear chain of identical atoms separated by a spacing a as
illustrated in Figure 34. The top of the drawing shows the atoms in their equilibrium position;
at the bottom the atoms are displaced from their equilibrium position. Let us assume that only
nearest neighbors exert forces on each other and that the interionic force obeys Hooke’s law.
The forces exerted on ion n by its two nearest neighbors are thus
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Figure 34 Vibrating linear chain of identical atoms spaced by a distance a.

Fn—l,n =y, - U,)
Fﬂ+1,n = y(un+1 - un) (73)
where 7is the force constant. The equation of motion for the ion is then
du,
a*
We look for solutions in the form of a traveling harmonic displacement wave (called a normal
mode)

= Y[un—l + Uy — zun]- (74)

U (1) = A" TN (75)
where A is the amplitude of the displacement wave, g the wavevector, and @ the angular
frequency. Substituting this into Equation 74 we get

~m@? = yle™% + % — 2] = -4y Sinz(gzﬁ), (76)
5o = hed sinﬂ‘. amn
m 2

As Figure 35 shows, we only need to consider displacement waves of wavelength larger
than 2a — due to the discreteness of the chain, all waves of shorter wavelengths are equivalent
to certain waves of longer wavelengths. This means we can restrict our analysis to small
wavevectors:

A22a = qS%, (78)

Figure 36 shows the dependence of the displacement frequency on wavevector g 7).
For small wavevector, Equation 77 becomes linear in the wavevector

Figure 35 Oscillating chain of atoms showing instantaneous displacements. The solid
curve conveys no information not given by the dashed one.
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with v the speed of sound. This is the relation one would obtain if the chain were continuous
rather than discrete (when a approaches zero, /a goes to infinity and the dispersion relation
becomes linear throughout). The dispersion of waves near the edge of the Brillouin zone at
Ta is therefore a direct consequence of the granularity of the chain.

In a two-atom linear chain the situation is more complicated because the atoms of
different kind can either move in phase (such displacement waves are called acoustic
phonons) or out of phase (optic phonons). Figure 37a illustrates the displacements that occur
for transverse acoustic (TA) and optic (TO) phonons of small wavevector. While both
displacements have the same large wavelength, the potential energy associated with the optic
phonon is larger because the interatomic bonds are much more distorted. The dispersion
relation now has two branches (see Figure 38a); for low wavevector the acoustic branch
approaches zero, but because of the large distortion at low frequency, the corresponding
energy for the optic branch is nonzero at zero wavevector.

Figure 37b shows the displacements for the acoustic and optic phonons of the shortest
possible wavelength (A = 2a). The corresponding energies (see Figure 384a) are slightly
different. Figures 37c and 37d show how the cases illustrated in Figs. 37a and 37b relate to
single-atom chain phonons: the optic branch vanishes as low wavevector optic phonons map
onto large wavevector acoustic phonons. Note, in particular that the low-g TO phonon for the
two-atom chain maps to a high-g TA phonon on the one-atom chain (cf. Figs. 37a and ¢).
Similarly, the TO and TA phonon modes at the edge of the Brillouin zone for the two-atom
chain, are identical on the one-atom chain (cf. Figs. 37b and d), but are now in the middle of a
Brillouin zone that is twice as wide (Figure 38b).

IIL. F. Electron-phonon interaction

The Bloch wavefunctions (64) are solutions to the Schrodinger equation only when the
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Figure 36 Dispersion of waves along a linear chain of atoms. The dashed line shows the
result one would obtain for a continuous medium. The slope of the dashed line
corresponds to the speed of sound waves in the medium.
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Figure 37 Waves on two-atom linear chains. Displacements are shown for (a) small
and (b) large wavevector. The in- and out-of-phase waves correspond to acoustic and
optic phonons, respectively. The bottom to graphs (¢ and d) show how the waves for a
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lattice is perfectly well ordered. In practice phonons cause a distortion of the lattice. The
distortion allows electrons to make transitions between Bloch states. This process is described
as a scattering of an electron with a phonon, and can either transfer energy to the phonon or to
the electron.

We consider a phenomenological treatment of this scattering relevant when the electrons
have been very highly excited by a laser pulse. For example, when a subpicosecond laser
pulse with photon energy of about 2 eV strikes a metal surface, the energy is absorbed by the
electrons. The electrons share this energy among themselves by electron-electron collisions
(see above), reaching a Fermi-Dirac distribution. Simultaneously, the electrons scatter with
phonons, effectively heating the metal. The spatial variation in the deposited laser energy
creates a complication: the energy diffuses away from the surface towards the bulk.

These ideas are expressed in a model for the response of a metal to ultra-fast photo-
excitation.[14, 15] This model states that the temperatures of the electrons, T,, and phonons
(the lattice), T}, evolve according to:

T, 9*T,
Ce(ﬂ)j = K(E)?Ze— 8T - 1)+ A(x,1)
o
G(T) 5k = ¢(T. ~ ) (€0

where A(x,?) is the energy deposited by the laser and C, and C; are the heat capacities of the
electrons and the lattice. The constant g determines how quickly the electrons and phonons
thermalize with each other. The first equation contains a term describing the diffusion of the
electrons. The energy carried by phonon diffusion is small compared with that due to electron
diffusion in a metal; phonon diffusion is neglected in this model. The constants are
approximately known, and so the electron and lattice temperatures can be found by numerical
solution of Equation 80.

Figure 39 shows the evolution of the electron and lattice temperatures at the surface of
platinum following excitation by a 32 uJ/mm2, 800-nm pulse. Initially the sample is in
thermal equilibrium at 90 K. The laser pulse causes a large transient rise in the surface
electron temperature followed by equilibration of the electron and lattice temperatures in a few
picoseconds.

This model assumes that the electrons are always thermalized with each other—that they
satisfy a Fermi-Dirac distribution at all times. In reality the laser pulse excites electrons far
above the Fermi level and a finite time is required for the electrons to thermalize. For example,
800 nm photons have 1.6 eV energy, while at 90 K, kzT = 8 meV. The relaxation of the
photo-excited electrons to a Fermi-Dirac distribution has been the subject of numerous
experiments.[16-19]

III. G. Photoemission spectroscopy

One of the most direct experimental methods for determining electronic states is
photoemission spectroscopy, illustrated in Figure 40. Light stimulates an electron in a solid. If
the electron is sufficiently excited, it escapes the material with energy

Ek =h(0-q)—Ei, 81
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Figure 39 Calculated evolution of electron and lattice temperatures following
excitation of platinum with a 100-fs, 32 /,tJ/mmz, 800-nm laser pulse.

The energy of the photo-emitted electron depends on the initial photon energy, %, the initial
state energy, E;, and the energy required to extract the electron from the material, @, known as
the work function. By measuring Ej, the energy of the initial state can be inferred. Generally
electrons are emitted over a range of electron energies corresponding to the range of occupied
states in the band structure, and the electrons comprise a photoelectron spectrum, as sketched
in Figure 40.

The states that are probed in a photoemission experiment depend on the source of the
initial excitation. Figure 41 depicts the some of the features which are observed with different
excitation sources.

When the photon energy is low, the electrons may not receive enough energy from a
single photon to overcome the work function of the material., but may escape if stimulated by
two photons. This two-photon photoemission, or TPPE, is used to study the electronic states
which lie between the Fermi level and the vacuum level. Because these states are above the
Fermi level, the electrons rapidly scatter out of these states; TPPE using short pulses can
therefore be used to study the dynamics of electron relaxation. Another way to study states
between the Fermi level and the vacuum is to apply a strong DC electric field to the sample
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Figure 40 In photoemission spectroscopy the kinetic energy, E, of the emitted electron
(right side of figure) depends on the initial state of the electron (left side of figure), the
photon energy, and the work function. After [20].
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surface. The potential barrier between an electron at the surface and a free electron in vacuum
can be overcome if the applied field is sufficiently large.

At the other extreme, x-ray photons with energies in the 1000-eV range can eject core-
level electrons. The resulting vacancy in the core level may be filled by an electron from a
valence level. The energy released by this transition from the valence level to the core level
may be imparted to another valence electron which is then ejected from the material with an
energy depending on the energy levels of the states involved. This process is known as Auger
recombination. The photoelectron spectrum following x-ray excitation has peaks which
directly reflect the energies of the core levels, and peaks which arise from Auger
recombination and reflect the energies of the valence and core levels. Spectroscopic
techniques that rely on core-level ionization often use a monochromatic beam of electrons as
the excitation source because electron-beam sources are conveniently produced in the
laboratory from hot filaments.

The escape of an electron from the surface is not always as simple as depicted in Figure
40. The electrons may scatter and lose some of their energy. These collisions lead to a broad
distribution of electron energies. When these electrons escape the surface, they are known as
secondary emission. Secondary emission is observed as a broad feature at low Ey. The
scattering of electrons accounts for the surface sensitivity of photoemission spectroscopy:
only electrons emitted in the near surface region escape the material and are detected. The
depth of the material that is probed with photoemission spectroscopy depends usually on the
escape depth of the photoelectrons and not on the absorption length of the excitation source.

IV. A SURFACE SCIENCE PRIMER

This section is an introduction to the physics which governs chemical reactions at
surfaces. Most of the examples are drawn from the chemistry of oxygen on platinum in
preparation for section V of this chapter.
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Figure 41 The photoelectron spectrum depends on the energy of the exciting photon.
X-rays are able to induce emission of core electrons and Auger electrons. After [20]
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Figure 42 The (111) and (100) surfaces of an FCC crystal. The arrows indicate atoms in
the crystal lattice which comprise the surface. In the diagrams of the crystals the spheres
representing the atoms are not drawn to scale compared to the size of the cube.

Surface reactions are influenced by the chemical composition of the surface and the
structure of the surface. To reduce the complexity, surface reactions are often studied on very
clean, single crystal surfaces. A single crystal surface is cleaned in ultra-high vacuum (1 X 10~
10 torr). Using the ideal gas law, one can calculate that at a pressure of 106 torr,
approximately 1 s is required for every surface atom to be struck by a gas phase
molecule.[21] Each such collision is an opportunity for a gas phase molecule to stick on the
surface. Thus to maintain a surface clean for, say, 104 s a pressure near 10-10 torr is required.

The direction of the surface plane with respect to the lattice of a single crystal is specified
by Miller indices.[7] Figure 42 shows examples of surfaces obtained from an FCC lattice.
The (111) surface has a high density compared with the (100) surface. We concentrate our
attention on the (111) surface of platinum, Pt(111).

IV. A. Sample preparation

Common procedures for cleaning a surface include annealing, and sputtering. The
precise cleaning procedure is often determined by trial-and-error, using the diagnostic
procedures described below to monitor the surface quality. As a starting point, there are
compiled lists of the techniques that have been used to clean many crystals.[22]

When the sample is annealed in UHV (i.e. kept at elevated temperature for a certain time),
some impurities simply desorb from the surface. For example, carbon monoxide desorbs
from Pt(111) when the temperature exceeds about 300 K. Annealing may also provide the
thermal energy required for surface atoms to rearrange themselves and correct small defects in
the surface structure.

Sputtering is used to remove the first few layers of atoms from the surface. A noble gas,
usually either neon or argon is admitted to the chamber. The gas is ionized and the ions are
electrostatically accelerated to the surface. The ions dislodge material from the sample surface,
including both the desired atoms and the impurities. This usually improves surface quality
because impurities often cluster at the surface, particularly following annealing in vacuum or
oxygen. Sputtering creates defects in the surface structure, so it is usually followed by
annealing.

Pt(111) is usually cleaned by annealing in an oxygen atmosphere. During annealing,
impurities such as silicon diffuse to the surface where they may bind with an oxygen atom,
becoming trapped at the surface as an oxide. When these oxides are removed by sputtering,
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the density of impurities in the near-surface region is reduced. Annealing in oxygen also
reduces carbon contamination because the carbon reacts to form carbon monoxide which
desorbs from the surface.

IV. B. Adsorption of reactants

There are two classes of interaction between a molecule and a surface. Chemisorption
refers to a molecule or atom attached on a surface by a chemical bond. Physisorption is a
much weaker van der Waals interaction between a molecule or atom and a surface. The energy
which binds a chemisorbed species to a surface is typically 0.4-10 eV while physisorption
energies are typically 0.01-0.1 eV.

To understand physisorption, picture a metal surface interacting with a polarized
molecule or atom as shown in Figure 43. Whenever a charged species is placed near a metal
surface its electric field causes an image charge in the metal.[23] The image charge is
positioned so that the electric field produced by a charge and its image charge is identical to
the field which would be produced by the charge and the true distribution of surface charge
on the metal. Figure 43 depicts a polarized adsorbate as two charges separated by a distance
u. The corresponding image charges are shown.

The interaction of the adsorbate with the surface may be determined by finding the total
electrostatic (Coulomb) interaction between the charges in the adsorbate and the image
charges in the metal:

U(z)=—ez[i+ N — ]
dmeg |2z 2z-u) (2z-u) (2z-u) (82)

62 u2

4reg 23 ’

On the right side of this equation, the interaction potential U(z) is expanded into a Taylor
series for small u/z. The interaction potential, Equation 82, is zero if there is no polarization,
1= 0. Otherwise the interaction varies as 1/z”.

When the adsorbate is very close to the metal, the image charge model shown in Figure
43 is not accurate because the interaction becomes repulsive. When the repulsive interaction is
balanced against the attractive interaction of Equation 82, the adsorbate typically settles 0.3 —
1.0 nm from the surface in a shallow well. Physisorption is observed only at low
temperatures. For example, Oz will physisorb on Pt(111) at 45 K and form multiple
physisorbed layers at 30 K.[24]

adsorbate » ’ m‘e‘tkal
e | sfupe
+ e et

Figure 43 A polarized molecule or atom near a metal surface interacts with its image
charges. After [21].
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Figure 44 Chemisorption of a molecule on a metal surface is accomplished by mixing a
d-orbital of the metal with an orbital of the molecule. Bonding (Md), and anti-bonding
(Md)* orbitals are formed. After [21].

An adsorbate is chemisorbed if it forms a chemical bond with the substrate. The bond
substantially changes the electronic states of the adsorbate. Figure 44 represents the energy
levels of a molecule chemisorbed on a transition metal surface. The left side of the diagram
represents the d-band of the transition metal. The right side represents a state of the free
molecule. When the molecule chemisorbs on the metal surface the orbital of the molecule can
mix with a d-orbital of the metal. The mixing is analogous to the formation of a bond between
two atoms to make a molecule, Figure 9. The chemisorption of O2 on Pt(111) is described in
detail in section IV. F.

IV. C. Surface diagnostics

In the discussion of photoemission spectroscopy, we mentioned that electrons may be
emitted from an atom by Auger recombination following removal of a core-level electron. The
energy of the Auger electron depends on the energies of electronic states of the atom; since
these energies are unique to each atom, the Auger spectrum identifies the atoms present in the
sample. Auger spectroscopy is one of the most common means of determining chemical
composition of a surface. Figure 45 shows the Auger spectrum obtained from a platinum
surface. Interpretation of an Auger spectrum requires comparison of the observed spectrum
with reference spectra from samples of known composition.[25]

yield of Auger electrons

| | |
0 100 200 300 400
energy (eV)

Figure 45 Auger spectrum of platinum. After [25].
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Figure 46 LEED patterns obtained from Pt(111), left, and O/Pt(111), right. The electron
gun (not visible) obscures one of the spots due to oxygen.

Low energy electron diffraction (LEED) is used to determine the order of a surface. A
monochromatic beam of electrons diffracts off the surface and is intercepted by a phosphor
screen. The left side of Figure 46 shows the pattern formed by scattering of electrons from
Pt(111). The hexagonal symmetry of the Pt(111) surface is reflected in the symmetry of the
diffraction pattern. The right side of Figure 46 shows the diffraction pattern from a Pt(111)
surface that has been exposed at 300 K to a few Langmuir of O5: in addition to the diffraction
spots due to the platinum atoms, there are spots attributed to diffraction of electrons from
oxygen atoms. By comparing the positions of the spots due to oxygen to those due to
platinum, it follows that the density of oxygen atoms is 1/4 the density of the platinum atoms.
The oxygen atoms are arranged in a regular grid on top of the platinum surface; if their
distributions were random they would not produce a sharp diffraction pattern.

The vibrational modes of an adsorbate can be probed by scattering a beam of
monochromatic electrons off the sample. Some of the electrons lose energy by exciting
discrete electronic or vibrational transitions in the adsorbates, so the distribution of adsorbate
modes is reflected in the distribution of energies of the scattered electrons. The technique is
called electron energy loss spectroscopy (EELS). Figure 47 shows the EEL spectrum of
chemisorbed O3 on Pt(111).[26-28] The signal at zero loss is 50 cm~! wide; this is the
resolution limit. The signals at 875 cm~1 and 700 cm! are attributed to stretching of the
oxygen molecule along the O-O bond axis.[26] The signal at 380 cm~! is assigned to
vibration of the Oz molecule perpendicular to the surface.[27] The signals at losses above 875
cm~! are attributed to electrons that excited multiple quanta of the surface modes or coupled
modes. The vibration of atomic oxygen with respect to the Pt(111) would scatter electrons
with a loss of 480 cm~1.[26, 27]

Infrared (IR) spectroscopy is another way to study the vibrational modes of adsorbates.
Infrared light reflected off the surface is absorbed at frequencies that are resonant with
vibrational frequencies of the adsorbates. IR spectroscopy using short laser pulses has been
employed to study the decay of vibration of adsorbates due to loss of vibrational energy to the
substrate. The decay is complete in roughly one picosecond for adsorbates on metal
surfaces.[29, 30] Very short laser pulses are used to resolve these timescales. Their intensities
are high enough for the nonlinear optical spectroscopies that were summarized in Figure 19.
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Figure 47 Electron energy loss spectroscopy of a saturated overlayer of Oz on Pt(111)
from a beam of 2 eV electrons incident at 75°. After [26]

The spatial distribution of surface electronic states can be imaged with atomic resolution
by scanning tunneling microscopy (STM). The STM micrograph can be interpreted as a map
of the surface because the electronic surface states are determined by the substrate and the
adsorbates. In a recent study of the thermal dissociation of Oz on Pt(111), an STM was used
to determine that when O, thermally dissociates, the oxygen atoms break free of their mutual
bond with enough kinetic energy to move approximately two platinum lattice constants.[31]
This is experimental evidence that atoms can have ballistic motion on a surface. Below we
summarize how the STM was used to determine the sites where O chemisorbs on Pt(111).

IV. D. Thermal chemistry

We have seen that oxygen binds to platinum in several different forms: physisorbed
molecular oxygen, chemisorbed molecular oxygen, and chemisorbed atomic oxygen. Because
each form of oxygen is bound at a different site on the platinum with a different binding
energy, these atoms become chemically active at different temperatures. A common way of
studying adsorbate/substrate systems is to increase the sample temperature at a regular rate
while monitoring the species desorbed from the surface. The experiment is called temperature
programmed desorption (TPD) or temperature programmed reaction spectroscopy (TPRS)
depending on whether the adsorbates simply desorb from the surface, or react to form new
species. The yield in TPD or TPRS is plotted against the corresponding temperature,
indicating the temperatures of thermally induced desorption and reaction.

Figure 48 shows the TPD of chemisorbed molecular oxygen, Oz/Pt(111), obtained with
a 4 K/s heating rate. The signal at 36 atomic mass units (amu), is due to oxygen molecules
comprised of the 18 amu isotope of oxygen, 180,. The 140 K signal, called a—03, is
attributed to direct desorption of intact molecules. The O, desorption at 750 K, B-03, shows
that not all the oxygen desorbs at 140 K. If the TPD is stopped between the 0-O2 and the B-
O, desorption signals, an EEL spectrum has features attributed to atomic oxygen, but none
attributed to molecular oxygen. The LEED pattern is the pattern produced by atomic oxygen
on Pt(111) (Figure 46, right side). These observations indicate that there is no molecular
oxygen on the surface, but there is atomic oxygen. The f-O2 signal must be due to
recombination of oxygen atoms, known as recombinative desorption.
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So far we have discussed adsorption of a single species. The final section of this paper
discusses photo-induced reaction between two adsorbed species, CO and O3z on Pt(111).
Production of CO; can be induced with light or heat. Figure 49 shows the signal at 48 amu
detected during TPRS of CO/O,/P(111). The surface was prepared with the isotopes C180
and 180, and so the signal at 48 amu is due to CO,. The different peaks correspond to the
CO interacting with oxygen atoms in different states. The first desorption peak, o—CO; is not
observed during TPRS of CO coadsorbed with atomic oxygen, CO/O/Pt(111).[32] The o-
CO; is attributed to reaction of CO with an oxygen atom created by O3 dissociation, before
this atom equilibrates with the surface.[33] The other CO, peaks, -CO», are due to reaction
between CO and atomic oxygen after the atomic oxygen has equilibrated with the surface. The
reaction occurs as the CO and O diffuse on the surface, forming islands; the multiple peaks
arise from reaction as the CO and O collide during different stages of this diffusion.[34]
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Figure 48 Temperature programmed desorption of Oo/Pt(111). The sample was dosed
with isotopic oxygen, 1802, and the signal is detected at 36 amu with a mass
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Figure 49 Temperature programmed reaction spectroscopy of CO/O/Pt(111). The
signal at 48 amu is due to carbon dioxide, C1802.
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IV. E. Isotope exchange

Isotopic labeling of reactants is used to determine pathways in surface reactions.
Different isotopes of a molecule have different vibrational frequencies and therefore have
different EELS spectra. With a mass spectrometer of resolution better than 1 amu, different
isotopes of the same product are distinguishable in TPD and TPRS.

Figure 50 shows the application of isotopic labeling to the study of thermal reaction in
0,/Pt(111). A mixture of 50% 160, and 50% 180 was prepared by mixing 160, and 180,
outside the vacuum chamber. This gas was admitted to the sample surface to produce a
chemisorbed overlayer denoted (1803, 1602)/Pt(111). The left of Figure 50 shows the signal
at 36 amu due to 1805 product. The O3 signal is about half as large as in Figure 48, and the
B-O7 signal is about one quarter as large as in Figure 48. The signal at 32 amu due to
desorption of 160, looks very similar to the signal for 180,. The right side of Figure 50
shows the signal at 34 amu due to 160180. There is no yield of a-160180, but comparison
of the left and right sides of Figure 50 shows that the yield of B-160180 is twice as large as
the yield of 3-180,. These observations are consistent with the evidence derived from EELS
and LEED above. At 140 K, oxygen molecules desorb from the surface without opportunity
to exchange isotopes of oxygen between molecules. Oxygen molecules also dissociate at 140
K. Near 700 K, the atoms recombine, but now there is opportunity for two different isotopes
to form a molecule, 160180, The probability of getting 1805 or 1603 at this stage is one half
the probability of getting 160180.

IV. F. Details of the bonding of oxygen to platinum

In the gas phase, molecular oxygen has 12 valence electrons in the 20p, 20,, lmy, 30g,
and 1, orbitals.[35] The right hand side of Figure 43 shows the electronic states of gas-
phase Oy which are most relevant to its bonding on platinum, including two 7 orbitals
oriented normal to the molecular axis which have identical energies.

Experiments with scanning tunneling microscopes (STM) show that O chemisorbs in at
least three different configurations on Pt(111).[36] The O is observed over a bridge site
between two platinum atoms with the O-O bond axis parallel to the surface and aligned to
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Figure 50 The TPD signal of (left) 180, and (right) 160180 from
(180,,1604)/Pt(111). The yield of 160, is very similar to the yield of 180,.



face the tops of platinum atoms. Calculations show that the O-O bond length in this
configuration is 0.139 nm and the energy of vibration of the O-O bond is 850 cm~1.[37] An
O3 species bound over FCC three-fold hollows is also observed with the STM.[36]
Calculations show that this Op molecule is tilted 8° out of the plane of the surface. The O-O
bond length is 0.143 nm and the energy of vibration is 690 cm~1.[37] The calculated energies
of vibration of the O-O bonds in the bridge and fcc configurations are consistent with
observed vibrational energies from electron energy loss spectroscopy. The stretching of the
0O-0 bond with respect to the 0.1207 nm length in the gas phase is consistent with the bond
length inferred from x-ray spectroscopy.[38, 39] The stretching is due to transfer of electrons
from the platinum into orbitals that are anti-bonding with respect to the O-O bond. The third
O3 species observed with STM is at Oy adsorbed at step edges.[36, 40] Temperature
programmed desorption experiments show that the binding energy of all the O; species is
close to 0.4 eV.[27]

When the O; chemisorbs, some of the oxygen orbitals mix with platinum orbitals. The
17* orbitals perpendicular to the surface mix with the platinum d-band orbitals, producing 71:;
and 7, orbitals. The 17* orbitals of the oxygen parallel to the surface are not greatly
perturbed and are denoted 7,,.[39, 41] A shaded bar in Figure 51 represents the extent of the
entire 7, and 7, region compiled from experimental[38, 42] and computational[41, 43, 44]
sources. Overall, there is a net transfer of charge from the platinum to the 0,.{27]

A surface layer of atomic oxygen on Pt(111) can be obtained by exposing the surface to
molecular oxygen at platinum temperatures above 145 K.[46] The surface coverage saturates
at 0.25 ML with a p(2x2) LEED pattern.[27] The oxygen binds in fcc three-fold hollow
sites,[47] with a 1.1 eV binding energy at 0.25 ML coverage,[27] and a 470-cm~! Pt-O
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Figure 51 The calculated density of states of platinum{45] shown with the
experimentally and theoretically determined states of O3 chemisorbed on Pt(111). The
vertical shaded bars indicate the approximate widths and locations of the orbitals of Oy
on the surface. Many of the O3 orbitals are out of the energy range shown.[13]
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vibration. Higher coverages of atomic oxygen can be attained by photodissociation of
N,O/Pt(111),[{48] or by electron-beam dissociation of O»/Pt(11 1).[26]

V. PHOTOCHEMISTRY OF OXYGEN ON PLATINUM

It has been well-established that high-intensity subpicosecond laser pulses induce
reactions among adsorbates on a metal surface by photo-excitation of electrons in the metal
substrate.[49-53] There is an active debate, however, about the energy distribution of the
electrons responsible for the reaction between adsorbates on a metal surface. According to
one proposal, the adsorbates interact with an essentially thermal substrate electron
distribution.[54] According to another proposal the photon-energy-dependent electron
distribution plays a significant role in the surface reactions.[52]

The yields in subpicosecond photo-induced reactions have a nonlinear dependence on
fluence, a high quantum efficiency, highly-excited nonthermal internal-state distributions, and
increasing translational energy with increasing laser fluence.[49, 51, 52, 54-59] Two-pulse
correlation experiments show that the excitation has a lifetime of about 1 ps.[52, 58-61] Time-
resolved surface second-harmonic generation indicates that desorption of CO from
CO/Cu(111) is complete in less than 325 fs.[56)

We measured the desorption of O3 and production of CO2 from CO/0,/Pt(111) induced
with 0.3-ps laser pulses at 267, 400, and 800 nm to determine the dependence of the chemical
reaction on the electron distribution. We find that the reaction is sensitive to photon energy
and therefore we favor excitation of the adsorbates by nonthermal electrons. We argue that the
two-pulse correlation experiments have been misinterpreted; the correlation time reflects the
time required for relaxation of adsorbate vibrational modes, rather than the substrate electron-
phonon coupling time.

When the photochemistry of CO/O2/Pt(111) is induced with continuous light(28, 62] or
nanosecond pulses,[51] the yields of O and CO; scale linearly with fluence and depend
strongly on photon energy. We report that the desorption induced by femtosecond laser
pulses also scales linearly with fluence when the fluence is low. We observe the transition
from linear to nonlinear dependence on fluence with 267- and 400-nm laser pulses.

V. A. Low-intensity photochemistry

Light from an arc lamp can induce desorption of O3 from O,/Pt(111). Figure 52 shows
the dependence of the O, desorption yield on photon wavelength.[28] The yield increases with
decreasing wavelength and there is no photodesorption at wavelengths longer than 550 nm.
Figure 53 shows that the desorption rate is linear in fluence: Y o F!. Irradiation also induces
rearrangement of the Oy molecules on the surface; temperature programmed desorption
following irradiation of O2/Pt(111) exhibits a broadened o-O; desorption peak compared to
nonirradiated O,/Pt(111).[62, 63]

A model called DIET, for desorption induced by electron transitions, explains the
wavelength dependence of the data and the linear dependence of yield on fluence. Figure 54
shows how electronic excitation of an adsorbate can cause it to acquire the translational
energy required for desorption. In the electronic ground state the interaction of the adsorbate
with the surface is described by the potential energy surface labeled PES;. The reaction
coordinate could be, for example, the distance between the adsorbate and the surface, or the
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alignment of the adsorbate with respect to the surface. The interaction of the adsorbate with
the substrate following electronic excitation of the adsorbate is represented by the potential
energy surface labeled PES;. In general, PES; does not have a minimum at the same reaction
coordinate as PES;. PES; could be purely repulsive, with no minimum at all.

Electronic excitation of the adsorbate is represented by the vertical arrow from the
minimum of PES. This transition is an example of a Frank-Condon transition. The transition
could be caused by a photon exciting an electron within the O,/Pt(111) complex; such an
excitation does not change the overall charge on the adsorbate. The transition could also be
the transfer of an electron from the substrate to the adsorbate, changing the charge on the
adsorbate. If an electron is transferred to the adsorbate, the shape of PES; reflects the
interaction between the charged adsorbate and the image charge in the substrate.
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Figure 52 The rate of desorption of O7 from Oy/Pt(111) under irradiation with
continuous light from an arc lamp. After [28]
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Figure 53 The rate of desorption of O, from Oy/Pt(111) induced with 240 nm
irradiation, as a function of the incident intensity. The line has slope 1. After [28]
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Figure 54 Desorption induced by electron transition (DIET) is explained in terms of
two potential energy surfaces for the adsorbate-surface interaction.

An adsorbate excited to PES; accelerates towards the new potential energy minimum.
When the electronic excitation relaxes, the adsorbate returns to PES{, having acquired
translational and potential energy, This energy accounts for desorption of the adsorbate.

Each photo-excitation of an electron and the possible subsequent excitation of an
adsorbate acts independently of the other photo-induced excitations. This feature of the model
accounts for the linear dependence of yield on fluence. The dependence of yield on
wavelength reflects the need for photo-excited electrons to have energies appropriate to access
available affinity levels of the adsorbates.

During irradiation of O/Pt(111) with an arc lamp, the fluence is kept low enough that the
increase in surface temperature is only a few Kelvin: the surface temperature remains well
below the 120 K temperature at which O; desorbs. According to the Fermi-Dirac function,
Figure 25, the thermalized electron energies are near 20 meV. In contrast, the photon energy
at, say, 400 nm, is about 3.2 eV. A photo-excited electron has an energy much greater than the
thermal energy: it is these nonthermal electrons which govern the desorption. The nonthermal
electrons have sufficient energy for the transition depicted in Figure 54. After thermalization
of the electrons, the energy of an individual photon is distributed among all the electrons, and
ultimately, all the surface modes. After thermalization, there is no longer sufficient energy in
any individual electron to induce desorption.

The situation could be different when a subpicosecond laser pulses excites the material.
According to Figure 38, the subpicosecond laser pulses creates a transient electron
temperature far in excess of the temperature required for desorption of O under equilibrium
conditions. Could this hot, thermal distribution of electrons induce desorption? Our
experiments are designed to address this question.

V. B. Subpicosecond laser desorption experiments

We studied the photochemistry of CO/O2/Pt(111) using laser pulses from a 1-kHz
regeneratively-amplified Ti:sapphire laser. The 100-fs, 800-nm pulses are frequency-doubled
in a 1-mm thick lithium barium borate crystal and frequency-tripled in a 0.3-mm thick beta-
barium borate crystal. The laser pulse energy is varied with a waveplate and a polarizing beam
splitter. The 267- and 400-nm pulses have 0.26- and 0.3-ps duration, respectively. The 800-
nm pulses are chirped to 0.3 ps so the pulse durations at all wavelengths are similar.
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The energy of each laser pulse is measured with a photodiode that is calibrated with a
power meter. The response of the power meter varies less than 3% over the range 267-800
nm. To ensure that there is no nonlinear absorption in the platinum, we measured the fraction
of the laser pulse energy absorbed into platinum. The measured absorption of the platinum is
constant over the range of fluences used in the experiments, and is in agreement with the
reflectivity calculated from the published dielectric function of platinum.[12] We also verified
that the absorption of the chamber window does not depend on fluence. These results confirm
that the laser energy absorbed in the platinum is a constant fraction of the puise energy
measured outside the vacuum chamber.

The spatial profile of the laser pulses is measured with an ultraviolet-sensitive CCD
camera. The profile captured by the camera is fit well by a Gaussian function. The fluence
incident on the camera is reduced to a level where the camera response is linear by reflecting
the beam off the front surfaces of two pieces of glass and is further attenuated with neutral-
density filters. To confirm the accuracy of the camera-based spatial profile measurement, we
measured the spatial profile of a Helium-Neon laser with the camera and compared it with the
profile determined by scanning a pinhole through the beam while measuring the transmitted
light with a photodiode. The camera and pinhole methods yield laser profiles that are identical
to within 1%.

The absorbed laser fluence is determined from the energy absorbed in the platinum, and
the spatial profile of the laser pulse, accounting for the 45° angle of incidence. The fluence
varies over the profile of the laser spot; values quoted below refer to the absorbed fluence at
the peak of the spatial profile. The tests described above confirm that there is no wavelength-
dependent, nor any fluence-dependent systematic error in the calculation of absorbed fluence.

The experiments are conducted on a 12-mm diameter Pt(111) crystal in an ultrahigh
vacuum chamber with a base pressure of 5 x 10-11 torr. All experiments are performed at a
base temperature of 84 K. The crystal is cleaned using Ne ion sputtering at an ion energy of
500 eV, annealing in vacuum at 1100 K, and annealing in 10-8 torr oxygen at 500-1000
K.[22] Surface order is verified with low-energy electron diffraction and surface cleanliness is
verified with Auger spectroscopy.[63]

After cleaning, molecular oxygen and carbon monoxide are adsorbed to saturation on the
platinum surface.[27, 28] Molecular oxygen is deposited on the platinum surface as soon as
the temperature has fallen below 94 K after a cleaning cycle. Carbon monoxide is deposited
after the oxygen. To reduce background pressure, all adsorbates are deposited using a tube of
12-mm diameter brought to within 3 mm of the platinum surface.

The laser-induced O, desorption yield and CO; reaction yield are measured with a
quadrupole mass spectrometer operating in pulse-counting mode. We alternate between
detecting O3 and CO; on successive laser shots. Between shots, we translate the sample to an
unirradiated part of the sample. A potential difference of ~90 V is applied between the sample
and the ionizer of the mass spectrometer to prevent stray electrons from interacting with the
sample. A tube of 4-mm inner diameter extends from the ionizer to the sample. This tube
collects molecules desorbed from the surface within 14° of the surface normal. Using a high-
speed mechanical shutter, we reduce the laser repetition rate to allow the gas-phase products to
be pumped out of the chamber between successive laser shots.

The yield depends on the area of the sample preparation exposed to the laser pulses. To
obtain an appreciable yield at low fluence, a large laser spatial profile of full-width-half-
maximum up to 1 mm? is used. At high fluence, the spatial profile is decreased to as low as
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0.05 mm2 to reduce the absolute yield and to avoid saturating the pulse-counting electronics.
The yields reported below are divided by the laser spot size to allow comparison between runs
taken with different laser spot sizes. Below 20 uJ/mm?2, less than 1% of the adsorbates is
depleted by a single laser pulse; to increase the signal in this regime, we admit up to 10 pulses
at a 1-kHz rate to one spot on the sample and the mass spectrometer measures the total yield.

V. C. Results of the subpicosecond laser desorption experiments

Figure 55 shows the yield of oxygen molecules obtained from CO/O»/Pt(111) with
267-, 400-, and 800-nm laser pulses. Near 10 pJ/mm2 there is a clear change in the
dependence of the yield on absorbed laser fluence. Above 50 uJ/mm2, the yield saturates
because the pulse desorbs an appreciable fraction of the adsorbed oxygen.[52]

Below 10 uJ/mm? the yield from 267- and 400-nm pulses depends linearly on fluence.
To determine the linear cross section in this regime, we measured the decreasing yield from a
single spot on the sample as the surface coverage is depleted by 3,000 laser pulses. The linear
cross sections thus obtained are 6267 = (4 + 2) X 1023 m2 and G400 = (4 £ 2) x 10-24 m?
for 267- and 400-nm pulses, respectively. We do not observe any linear dependence of yield
on fluence for 800-nm laser pulses; continuous light sources with wavelengths longer than
600 nm also do not induce reaction[28].

Between 10 and 50 pJ/mm? the yield depends nonlinearly on fluence. The data can be
described by a simple power law, ¥ ~ F”, where p > 1 and F is the fluence absorbed in the
platinum. As Table 1 shows, the exponent p decreases with decreasing wavelength.

The wavelength dependence of the yields is also apparent in a comparison of the absolute
yields at a particular fluence. Table 2 summarizes the wavelength dependence of the yields at
1 and 30 uJ/mm2. At both fluences, the yield increases substantially as the wavelength
decreases.

Figure 56 shows the yield of carbon dioxide from the same sample preparation as Figure
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Figure 55 Yields of O2 from CO/O7/Pt(111) obtained with laser pulses of 0.3-ps
duration at A 800-, @ 400-, and @ 267-nm wavelengths.
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Figure 56 Yields of CO7 from CO/O2/Pt(111) obtained with laser pulses of 0.3-ps
duration at 2 800-, © 400-, and (J 267-nm wavelengths.

55. The dependence of the CO; yield on fluence is similar to that of O3. Table 3 summarizes
the ratio of yield of O, to yield of CO;. When using 267- or 400-nm pulses at fluences
below 10 pJ/mm?2 (i.e., in the linear regime), the yields of Oy and CO; are the same. Above 20
HI/mm?2, the yield of O, is substantially more than the yield of CO,, and the ratio is smaller at
shorter wavelengths. The ratios shown in Table 3 are not corrected for the small dependence
of the mass spectrometer detection efficiency on species.

To explore the time dependence of the desorption, we measured the total desorption yield
from two 80-fs laser pulses as a function of the delay 1) - ; between them. The pulses are
orthogonally polarized to avoid interference. The resulting two-pulse correlation is shown in
Figure 57. The dashed line shows the total yield when the two pulses act independently, i.e.,
when #) —t — $oo. The dependence of the signal on #{ — t; reflects the evolution of the
substrate and adsorbate excitations responsible for desorption. The data show a 1.8 ps wide
peak centered at ¢1 — t = 0 on top of broad wings. The broad wings are approximately 0.1 ns
wide.

V. D. Discussion

The desorption and reaction yields at fluences below 10 p#)/mm?2, shown in Figures 55
and 56, scale linearly in fluence. The cross sections are about 10~23 m2 and increase with
decreasing wavelength. The yield of Oy and CO, obtained from CO/O,/Pt(111) with
continuous light[28] or nanosecond-pulses[51] also scales linearly in fluence. The cross
sections measured with these low-intensity sources are about 10-23 m2 and increase with
decreasing wavelength. These similarities suggest that the linear surface femtochemistry is
due to the same mechanism responsible for the surface photochemistry induced with
continuous-wave or nanosecond-pulsed light sources.

The excitation of CO/Oy/Pt(111) with these low-intensity sources has been attributed to
electronic transitions into normally-vacant orbitals of the O,.[28] As discussed above, this
new electronic configuration causes the adsorbate atoms to move, accumulating vibrational or
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Table 1 Wavelength dependence of the power law exponent. The yield is linear in
fluence below 10 pJ/mm?, but very nonlinear in fluence above 10 yJ/mmz. There is no
low-fluence yield with 800-nm laser pulses.

P 267 nm 400 nm 800 nm
£ 10 pJ/mm? 1.1£0.1 09+0.1 na.
> 10 wi/mm? 48+0.5 6.0+0.5 72405

Table 2 Wavelength dependence of the laser-induced yield. At all fluences studied, the
yield increases with decreasing wavelength.

yield 267 nm 400 nm 800 nm
1 u¥/mm? 3405 0.1+0.02 0
30 /,lJ/mm2 8000 £ 1500 2000 £ 500 120 £ 25

Table 3 Wavelength dependence of the ratio of O to CO2 yield. The ratio is one at
fluences below 10 yJ/mmz, but O desorption is favored over production of CO2 at
fluences above 20 pJ/mmz. At fluences above 20 yJ/mmz, the ratio is strongly
wavelength dependent.

0,2:COy 267 nm 400 nm 800 nm
< 10 pJ/mm? 1£0.1 1+0.1 na.
> 20 pJ/mm? 25+5 55+ 15 70 + 10

1600

1200

800

400

count per unit area (mm—2)

pulse separation (ps)

Figure 57 Desorption yield versus time delay #) —#, between two 80-fs excitation
pulses at 800-nm for pulses of equal absorbed fluences. The dashed line denotes Y(¢; —
t,= #o0). The width of the central peak is 1.8 ps. The desorption yield is still
enhanced after 75 ps.[52]



translational energy that may lead to desorption or reaction. Two mechanisms for the
electronic transition have been proposed. The photon can stimulate a direct transition between
orbitals in the Oo/Pt(111) complex.[28] Alternatively, the photon may excite an electron to a
state above the Fermi level in the Pt(111) band structure, from which it crosses into an orbital
of the O2/Pt(111) complex.[64] Either way, the electron interacts with the O, while retaining a
substantial portion of the initial photon energy. The surface photochemistry in the linear
regime is therefore governed by electrons with a nonthermal distribution. The wavelength
dependence of the cross section is due to the required matching of the energy of the photo-
excited electron with the energies of the vacant O, orbitals.

Irradiation of a metal surface creates an electron distribution with thermal and nonthermal
components. As indicated in Figure 39, after intense subpicosecond laser pulses excite a
metal, the thermal distribution of electrons that can be several thousand Kelvin for a few
picoseconds.[49] Several authors attribute the nonlinear dependence of yield on fluence, high
desorption yields, and short excitation lifetimes to these transient hot electrons.[57, 65-67]
The electron temperature depends on the pulse duration and the fluence absorbed in the
platinum, but not on photon wavelength.[14]

Our experiments show three ways in which the nonlinear surface femtochemistry
depends on wavelength. The power-law exponents summarized in Table 1 depend on
wavelength, increasing from 4.8 £ 0.5 at 267 nm to 7.2 + 0.5 at 800 nm. The desorption
yields summarized in Table 2 are also wavelength dependent: at 30 pu)/mm?, the yield from
267-nm pulses is about 4 times that from 400-nm pulses, and about 65 times that from 800-
nm pulses. The ratio between Oy and CO; yields, summarized in Table 3, depends on
wavelength, varying from 70 at 800 nm to 25 at 267 nm. The nonlinear femtochemistry of
CO/O/Pt(111) depends on wavelength, and so the thermalized electron distribution cannot be
solely responsible for exciting the adsorbates. We attribute the wavelength dependence of the
nonlinear surface femtochemistry on CO/O,/Pt(111) to interaction of the adsorbates with
electrons from a nonthermal (non Fermi-Dirac) distribution.

The data from the two-pulse correlation experiments, Figure 57, show that the sample
retains excitation from the first laser pulse for longer than 10 ps. This correlation time is
longer than the electron-electron, electron-adsorbate,[55, 67] electron-lattice,[15, 49] and
lattice-adsorbate[29, 30] relaxation times. The only remaining equilibration process is the
cooling of the surface to the bulk, which occurs on roughly the same time scale as the decay
of the wings. The correlation beyond 10 ps indicates that desorption is accomplished more
easily from a pre-heated surface than from a cold surface.

We consider now the prominent 1 ps wide peak in Figure 57.[52, 61] Experiments show
that in subpicosecond laser excitation of gold film, the nonthermal electron distribution
persists for 0.5 ps.[16, 68] Though there are no published measurements of the electron-
electron thermalization time for platinum, the thermalization time in platinum is likely less than
the 1 ps correlation in Figure 57. It is therefore unlikely that the 1 ps correlation reflects the
time for electrons to thermalize.

The 1 ps correlation in Figure 57 has been attributed to cooling of the thermalized
electron distribution,[50, 59, 61] because, as Figure 39 shows, the electrons equilibrate with
the lattice on a 1 ps time scale. Though the thermalized electron distribution may contribute to
the laser-induced desorption and contribute to the 1 ps correlation, the wavelength dependence
of our data indicates that thermalized electrons do not solely govern the desorption. The 1 ps
correlation more likely reflects the time required for the adsorbates to dissipate the vibrational
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excitation induced by the first laser pulse. Indeed, the time scale for relaxation of vibrational
excitation at a metal surface is approximately 1 ps.[29, 30]

V. E. Conclusions from the surface femtochemistry experiments

The absolute and relative cross sections for desorption and reaction depend on fluence.
At high fluence, where desorption is more efficient than reaction, adsorbates can be desorbed
with subpicosecond time-resolution for analysis. The efficient desorption could also be used
to create empty reactive sites and increase reaction rate in a catalytic process in which site
blocking inhibits the reaction. Finally, because the linear surface femtochemistry is caused by
the same mechanism as the surface photochemistry induced with continuous light, the
dynamics of the surface photochemistry induced with continuous light can be studied with
femtosecond time-resolution by limiting the femtosecond pulses to low fluence.

The transition between nonlinear and linear surface femtochemistry is also of theoretical
interest. At low fluence, the linear dependence of yield on fluence is due to desorption or
reaction caused by a single electronic excitation. Above the transition fluence, the nonlinearity
indicates that cooperative action of the photo-excited electrons dominates the linear process.
These cooperative effects have been described as a frictional coupling between the substrate
electrons and the adsorbates,[66] and as a repeated excitation of the adsorbate within the time
required for cooling of the adsorbate vibration[67].

We describe the surface femtochemistry of O2/CO/Pt(111) as follows. Linear surface
femtochemistry, observed at fluences below 10 uJ/mm?2, is due to the same mechanism as
surface photochemistry induced with continuous-wave and nanosecond pulses. Above 10
pJ/mm?2, another excitation mechanism dominates the reaction; yields are nonlinear in fluence
and depend on wavelength.

It is not correct to completely attribute the desorption and reaction yields to the influence
of a thermalized electron distribution, such as depicted in Figure 39. Models need to account
for the nonthermal electrons to predict the wavelength dependence of our data. This result
implies that previously-published two-pulse correlation data must be re-interpreted. The short,
10-12-s correlation is due to relaxation of vibrational excitation of the adsorbates between
laser pulses, and not due to cooling of the electrons to the bulk phonon temperature.
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