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A general expression for the change in transport coefficients of a dilute gas in the limit of an infinite
external magnetic or electric field is derived without using a perturbation expansion of the collision opera-
tor. Previously derived properties of the saturated field effects are subsequently generalized and some im-

plications are discussed.

In a recent review of the kinetic theory of field effects on
transport phenomena in dilute polyatomic gases, expressions
for the saturated field effects have been presented.! These
expressions were a convenient tool for discussing a number
of properties of field effects. They were, however, derived
only up to second order in a perturbation expansion of the
collision operator #Z. In this Rapid Communication it will be
shown that similar expressions can be derived in general
within the framework of the kinetic theory of dilute gases.

Consider transport coefficients L*# defined by

Jo=— JL-XF )]
B

where X? is a macroscopic thermodynamic force and T a
thermodynamic flux. From the Boltzmann equation, using
a first-order Enskog approximation, one can show that the
coefficients L*® in a magnetic or electric field B or E,
respectively, can be written as

L8(B;E) =k (V|(R + L) ' TRY* | )

where the ¥'® represent microscopic fluxes of which the ir-
reversible macroscopic fluxes T* are averages, and the
operator . represents the field-dependent part of the Liou-
ville operator which is proportional to B or E, the strength
of the field; k is Boltzmann’s constant. This expression is
restricted to dilute gases in the linear regime. For details of
the notation and the theoretical developments leading to Eq.
(2) we refer to, e.g., Ref. 1.

All  velocity-dependent and angular-momentum-de-

pendent functions are elements of a Hilbert space with inner
product as in Eq. (2). For the purpose of the derivation,
the basis of the Hilbert space is chosen in such a way that
all basis functions are eigenfunctions of ., The space can
then be divided into two subspaces, H,, spanned by all
eigenfunctions with zero eigenvalue, and H, spanned by all
other eigenfunctions. Note that H, contains not only all
functions isotropic in the angular momentum, but also
anisotropic-in-T functions with eigenvalue zero.

The collision operator & is now split into a diagonal part
R4, which couples only functions within each of the two
subspaces, and a nondiagonal part, % ,4, Which accounts for
cross couplings:

R=Ry+ R . 3)

Whereas the notation is the same as in Ref. 1, the subdi-
vision of Hilbert space and the splitting of # are not. In
Ref. 1 H, contains only the functions which are isotropic in
the angular momentum, while the anisotropic functions with
zero eigenvalue belong to H;. With this usual subdivision
the elements of 4,4, reflecting the coupling between isotro-
pic and anisotropic-in-_f functions, can be treated as small
perturbations and the operator (& +i¥) ! expanded in
terms of #,4.2> One would like, however, to avoid such an
expression and subsequent approximations. For this pur-
pose the alternative subdivision and corresponding splitting
of # introduced above is more appropriate.

If we then use the operator identity valid for arbitrary
operators 4 and B,

(4+B)7'=47'-4"'B(4+B)"'=47'"-(4+B)"'BA™' =A"'-47'BA"'"+ 4" 'B(4 +B)"'BA" , 4)
with
A=Ry+i¥, B=R,, A+B=R+iZL, (5)
we can rewrite the right-hand side of Eq. (2) in an alternative form,
(VR +iL) B = (V| (Ry+iL) WY — (V| (Ry+ i) 'R R+ i L) Ry *
(V| ( R+ i) T\ Ri( R+ L) Rog( R+ i L) TR (6)

The second term, which is odd in .4, vanishes becguse it represents the inner product of two functions which are orthogo-
nal to each other. Indeed, the microscopic fluxes ¥ <, which are isotropic in the angular momentum, are elements of Hy,
while functions (#y+ i L) "R g(Ry+ i L) ~ W= are elements of H,. Hence

(T (R +iL) B = (T (B + i) I+ (V| (R +iL) " ' Boa( R+ L) " Ro( R+ i L) "W EY* ™)
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Since, moreover,
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(Ry+ i) WWoe=R{' Ve (R +iL) i LR T o=RT' T | (8)

where we have used the fact that functions %! ¥ are elements of H 0, 5O that LR o= 0, we obtain the equality

(Ve|(R+iL) " TN = (V| R UBY* + (R R V| (R +iL) " ' Rog BT )

Here we have also used the fact that #' = R#R with #' the
superoperator adjoint of # and R the angular-momentum
reversal operator: Rf(T)=f(—=T), R ¥e=¥= Introduc-
ing angular-momentum polarizations X e,

Xe=RoRi T, (10)

we finally have

CB(BE) =k (VR WA * + k (RX* (R +iL) "' XBY .
089

The zero-field coefficient may now be written as

LoB0) = k (TR TBY*+ Kk (RX*|RIXBY* , (12)

and the change in transport coefficient due to external fields

as

ATB(B.E) =k (RX*|(R+ i) "'XBY*— k (R X*| R~ 'XB)™ .
13)

Equation (13) gives an exact alternative expression for the
change in transport coefficients in external fields, which
may be compared to the one which follows directly (without

r
further transformations) from Eq. (2):

ALB(B.E) = k (V| (R +iL) " \WBY* — k (To|R-1TFA)Y* |
(14)

The only difference between the transformed expression
(13) and the original expression (14) is that the first con-
tains the polarizations X*e€H 1, instead of the microscopic
fluxes ¥ € Hg.b

It is precisely this feature which will enable us to derive a
simple expression for the matrix of saturated field effects,
i.e., for the infinite field limit

AL*(e0) = lim (RX°|(R +iZ)~'XF)*
—k{(RX|R'XP)* . 1s)

In order to evaluate this limit we divide the collision opera-
tor in the following way,

R= gs +gns )
where H; is the secular part of # which commutes with £,
RL =LR, an

(16)

while #, is the nonsecular part and does not commute with
<7 We then have

pim (RX“U(R+iL)™'xF) = lim (RX|[1+ (R+iL) ™' Rosl “H( R+ L) 7 IXF)

= lim (RI1+ R A+IL) ™\ Ros) 7' X (R +iL) X

Since X“ lies in H, the function (#,+i.%)~'X* is a state
vector in H{ of which all components vanish in the limit
B;E — . Consequently,

m (RO (Bt i) 7' Ros) "X (R4 i) TIXP) =0,
19)
and the matrix of saturated field effects becomes

AL (00) = —k (RX|~1XP)* . (20)

Apart from its general validity this expression has several
advantages. First of all the positive semidefinitiveness of #
can now directly be applied. Secondly, the analogy with the
expression for a transport coefficient in the field-free case is
evident. It is, in particular, the positive semidefinite charac-
ter of # which leads directly to an inequality for the satura-
tion value of the field effects. Indeed, as a direct conse-
quence of this property of #, one has not only that the ma-
trix of transport coefficients must be positive definite [cf.
Eq. (2)],

Eﬁa'taﬂ'ﬁﬂao ’ @n
a,B

(18)

[

but also that the matrix of saturated field effects [cf. Eq.
(20)]1 must be either negative semidefinite for X’s which are
all even in the angular momentum, or positive definite for
X’s which are all odd,

zﬁa'AEaB(OO)”Y_).ﬁ =0, if Rx*=x* »

@B =0, ifRX*=—X" . 22

In the equalities (21) and (22) the »’s are arbitrary real vec-
tors. It should be noted that while the inequality (21) can
also be derived from the macroscopic argument that entropy
production must be positive definite, there seems to be no
macroscopic argument. which can be invoked to derive the
inequalities (22).

In analogy to the usual inequalities for transport coeffi-
cients,® it follows from (22) for the change in transport
coefficients, that

=0, if RX*=X" ,
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and furthermore that, for both even and odd X’s,

[ALZE (o) 1P< AL (00)ALFE () , (24)

where Aé,’i‘,‘f denotes a diagonal element of the (diagonal)
tensor AL**, etc. This useful inequality was previously esta-
blished! on the basis of the above-mentioned perturbation

expansion to second order and use of the spherical approxi-
mation.” As we have shown here, this inequality is an exact
result if Boltzmann kinetic theory applies and does not
depend on the relative smallness of %#,4.°

A final remark is in order. It seems plausible that the
validity of the result (24) is not restricted to the dilute gas
regime. One might therefore expect that it could also be es-
tablished on the basis of a more general theory.
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