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A comparison of data on the viscomagnetic effect. flow birefringence and depolarized Ravleigh
line broadening for various gases of linear molecules at temperatures between 90 and 293K is
carried out. From the combined results information is obtained on the scalar structure of the
non-equilibrium angular momentum polarization produced in viscous flow.

1. Introduction

The second rank angular momentum polarization is responsible for such
seemingly unrelated phenomena as the viscomagnetic effect, flow birefringence
and the collisional broadening of the depolarized Rayleigh line in dilute gases
of linear molecules.

The first two effects are a consequence of the steady state non-equilibrium
angular momentum polarization produced in viscous flow. While the tensorial
structure of this polarization is known, the scalar factor (which depends on the
magnitude of the reduced peculiar velocity W and/or the angular momentum
operator J) has so far remained undetermined. As early as 1974 Hess') pointed
out that a comparison between the viscomagnetic effect and flow birefringence
offers a possibility to obtain information on this scalar factor. Such a com-
parison will be carried out in section 2.

The third effect is caused by collisional decay of a second rank in J
polarization. which is temporarily non-zero through fluctuations. It will be
shown in section 3 that the deviations from a Lorentzian line shape observed in
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depolarized Rayleigh line broadening experiments for molecules with high
rotational states are related to the results of the viscomagnetic effect and flow
birefringence.

From the systematic comparison of data on the three effects information is
obtained about the scalar factor of the polarization produced in viscous flow.
As discussed in section 4 the range of possible expressions is narrowed down
considerably. One of the simple expressions for the scalar factor which has
been proposed in the literature is shown to agree with all results obtained so
far for gases of ‘‘classical’’ linear molecules, although this solution is not
unique.

2. The viscomagnetic effect and flow birefringence
2.1. Theory

The non-equilibrium state of a dilute gas is described by the distribution
function f=f91+ ¢), with f© the Maxwell-Boltzmann distribution. In the
case of viscous flow the formal solution of the linearized Waldmann—Snider
equation reads (in the absence of external fields)

¢ = \/2@%”:"75. (1)

n

Here ®#7' is the inverse of the linearized Waldmann-Snider collision operator
and ¢% = V2 WW (for details of the notation see e.g. ref. 2). The operator &
is defined in a Maxwell-weighted Hilbert space of tensors built from the
reduced peculiar velocity W and the dimensionless angular momentum opera-
tor J. The operator ®' is only defined outside the hydrodynamic subspace. A
scalar product is defined according to

+x

(A|B)= %Tr j AfOB d'c Q)

—a

(if A is self-adjoint; see ref. 2). A non-equilibrium average of a quantity which
vanishes in equilibrium can thus be written as

(A)=(Al¢). )

In order to represent ® a complete set of orthonormal expansion tensors is
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defined

2p 172

d,ms - {(;!—) m%_%)t[l.’]_q%} >[ W’](p)[J](q)Pfq . (4)

Here ® denotes a g-fold contraction over tensor indices. To each tensor of rank
pin W and g in J belongs a complete set of scalar factors P}’ which depend
on W? and J*. If the factor P? = 1 the label s in ¢"* may be dropped (cf. the
tensor ¢ in eq. (1)).

The transport properties of a gas can all be expressed in terms of matrix
elements of the operator #~' with respect to the basis functions @¢*¥. The
viscosity tensor, for example, is found from the non-equilibrium average of the
momentum flux ¢*, which is proportional to the stress tensor

M= -2kT(d®| % '¢p*): Vv =-2n: V0. )

Since & is a scalar operator, the inverse matrix element (¢”|® '¢?) can be
written as a product of a trivial isotropic tensor and a reduced scalar matrix
element given by

571(20) = %(¢20 : @—1¢20>0 ) (6)

Truncation of the basis set allows straightforward matrix inversion, so that in
lowest approximation the shear viscosity is given by

kT

TS0 0

n

The scalar matrix elements are proportional to effective collision cross sections

SGi =S8, ®)

P'q's P'q's
so that in first approximation

kT

n= o= ' 9
(0, 3(20) ®

In a second approximation coupling to tensors anisotropic in J has to be
taken into account. This coupling is a consequence of the non-spherical
interaction. The presence of these ‘‘polarizations” leads in general to field
effects on the transport properties and to optical effects such as flow bire-
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fringence. In this section we will concentrate on viscous flow of gases of linear
molecules in a 'S electronic ground state.

Experiments on the viscomagnetic effect (VME) have clearly established that
for such gases the predominant polarization in viscous flow is of second rank in
J. Moreover. the data are very well described by a single moment curve (see
refs. 3-7).

A single moment description only results if the following assumptions are
true:

~ A single tensor %" (out of the set ¢") couples to the momentum flux ¢~
(through . see e.g. ref. 8):

HB™  RS™) = 8, (1) B(E). ‘ (10)
This tensor is given by

" = p (_]j)‘/2 JJ
" 2 <J2(J2_ %))l/? .

[

(11)

with a normalization condition for P% reading
<(P272)2J2(J2 - ;t))() = <J2(J2 - ;»() . (12)

—The tensor ¢”" is an eigenfunction of % in the subspace of functions
anisotropic in J (or an eigenfunction of R,. see e.g. ref. 8). so that

(@ : RP™T), = 56, (v),S(027) . (13)

Note that the other tensors of the set ¢**

consequence of eq. (13) is that

need not be eigenfunctions of %, A

(@7 : Ry, = 5{(0)S(02m)) (14)

as the off-diagonal coupling to @> may be neglected (typically
{B(%")/&(02m)} = 0.05).
The parameters follow from a fit of the resulting single moment curve to the

data of the viscomagnetic effect®):
@ 02my2
Yoor = —(,2}— , (15)
©(20)5(027)

representing the magnitude of the effect. and
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& (@ E(02m). (16)

;)uH:] B ‘gx;u'nkT

representing the position of the effect on the B/p axis for which the precession
angle wr is unity. The decay cross section ©(027) and the absolute value of the
production cross section &(%") can therefore be obtained from these experi-
ments. Consequently. it is also possible to determine the inverse matrix
element
5—1(0217 =l<¢02ﬂ . @—ld’m) - _ @(g(:]n 17)
o ' O @), (027)

In flow birefringence (FBR) experiments the non-equilibrium average of the
tensor

2_3 2_ 3
2 A

<

is directly observed (see refs. 9 and 10). This average is proportional to the inverse
matrix element

S—l(gg = ;<¢oi . @—14,2(»() . (]9)

which can therefore be determined from the FBR data (see refs. 10 and 11).
According to the assumptions made before (eqs. (10) and (13))

<¢O§ . :7/?-]¢20>n — %<¢Oi : ¢02'rr>”(¢02n . @71¢2(l>0 ) (20)
The overlap integral

S—l Oé’
-1 (U;',Z(w (2] )
G

a,=($": §"7) =

can thus be obtained from a comparison of VME and FBR. By substitution of
eqs. (11) and (18) in eq. (21) it is seen that

2 -2

o= () FUr-n] @, 2)

A determination of the overlap integral a, can therefore yield interesting
information about the scalar factor of the polarization produced in viscous
flow.
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If only a single rotational level is excited, this expression reduces to
a,=(P%),  ‘“single level case” . (23)

Clearly P does not depend on J?2 in such a case, but it can still depend on W~
However. if P% does not depend on W’ a, must be equal to unity in a single
level case.

If, on the other hand, mainly high rotational states are excited (**classical™
linear molecules), eq. (22) may be approximated by

2

a, = (J*);"(J*PP), “classical linear molecules™ . (24)

Lg

2.2. Results for classical linear molecules

In table 1 the room temperature data available for ‘“classical’” linear mole-
cules are listed. These data have been obtained from the shear viscosity, the
viscomagnetic effect and flow birefringence (see ref. 10). (For a review of the
various experimental quantities see ref. 12.) Also listed are the values for |a,]
calculated from these data according to eq. (21). Within the experimental
uncertainties |a,| = 0.70 = (2)"'* for these molecules.

In order to study the temperature dependence of a,. FBR measurements
have been performed over a temperature range from 90 to 293K for N, and
CO (see ref. 11). VME data are already available for these gases. The results
for |S/(%™)| from the VME and for $7'(&) from FBR have been plotted in figs.
1 and 2 together with the values obtained for a,. It is shown that for N, and CO
la,| remains at a constant value 0.70=2"'" in the temperature range in-
vestigated.

The normalization of ¢® and ¢®" requires that |a,| < 1. The results for |a,|
fulfill this requirement. Since the value for |a,| is neither 0 nor 1, the tensor ¢™
does not belong to the basis set ¢*.

TABLE 1
Results derived from the viscomagnetic effect*®) and from flow birefringence') for classical linear
molecules at 293 K. The estimated uncertainties for a, are 7%.

Gas m; 6 &(20) &(027) &%)l 1S$~(%) -57'(%) la.!
(K) 10%m?) (10%m?) (102m?) (10%sm™) (10"sm™)

N, 28.00 2.88 34.6 23.7 1.50 2.74 1.97 0.72

CO 28.01 2.78 34.7 235 2.02 2.69 1.97 0.73

N,O 44 .01 0.60 52.4 64 3.52 1.98 1.34 0.68

CO, 44.01 0.56 52.2 68 3.86 2.05 1.38 0.67

OCS 60.07 0.29 73.5 79 4.76 1.80 1.19 0.66
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Fig. 1. Results derived from viscomagnetic effect and from flow birefringence for N,. Estimated
error 5% for $7'(%") and S~!(%). and 7% for a,.

In section 4 the implications of these results for the possible expressions for
the scalar factor P* will be discussed.

2.3. Results for hydrogen isotopes

In table II the results derived from VME and FBR data are listed for the
various modifications of the hydrogen isotopes at 293 K, while in figs. 3 and 4
the available data from the VME and from the study of the temperature
dependence of FBR (see ref. 11) are plotted for oD, and HD. Again |a, | <1 as
required.

For pH, at 293K and oD, at T<200K the ‘“single level case” (see
subsection 2.1) is approximately reached. It is found that for these gases
la,|=1 within the experimental uncertainties (see table II and fig. 3). This

confirms the assumption that P}’ does not depend on the translational energy
w2
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Fig. 2. Results derived from the viscomagnetic effect and from flow birefringence for CO.
Estimated error 5% for S} (%") and $~'(%). and 7% for a,.

For HD |a,| varies from 0.90 at 90K to 0.83 at 293K. illustrating the
transition from the single level case to the *‘classical’ case.

For nH, and nD, at 293 K (see table 1I) no simple conclusions can be drawn.
since these gases have to be treated as mixtures of ortho and para species.

TABLE 11

Results derived from the viscomagnetic effect>®) and from flow birefringence'®) for modifications of
the hydrogen isotopes at 293 K. The experimental uncertainties in a, are estimated 12% (except
for HD: 7%).

Gas m, 0 &(20) &(027) &%) 1S~Y(&™) -S (%) la;:
(K) 102%m)  10%m?)  (10¥md)  (104sm=?) (10%sm™)

oH, 2016 853 18.4 0.21

pH: 2016 853 18.4 0.49 0.019 0.846 0.78 0.92
nH: 2016 853 18.4 0.51 0.0133 0.569 0.31 0.54
HD 3021 643 18.7 2.26 0.282 3.28 2.72 0.83
oD, 4028 430 18.6 0.91 0.026 0.872 0.85 0.97
nD; 4028 430 18.6 0.88 0.027 0.937 0.76 0.81
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Fig. 3. Results derived from the viscomagnetic effect (A) and from flow birefringence (O) for oD:.
Typical error bars are indicated. The overlap integral ja,| = $7'(%)/S™'(%7) = 1 (not drawn).

3. The broadening of the depolarized Rayleigh line

3.1. Theory

In section 2 a complete set of functions ¢* of second rank in J has been
introduced. One of these tensors, ¢*", is relevant for a single moment
description of the viscomagnetic effect; ¢*" has therefore been assumed to be
an eigenfunction of # in the subspace spanned by the set ¢*. The other
elements of this set need not be eigenfunctions. In agreement with the results
of section 2 it will here be assumed that the scalar factors P depend on J*
only.

Orientational fluctuations are at the origin of the collisional broadening of
the depolarized Rayleigh line (DPR)"'®), see also ref. 17. The Fourier
transform of the line shape is the time correlation function of the tensor ¢'".
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Fig. 4. Results derived from the viscomagnetic effect and from flow birefringence for HD.
Estimated error 5% for $7'(%") and $~'(%). and 7% for a.,. .

which is also relevant in the description of flow birefringence (see eq. (18)):
C(0)=5™0) : 6*(1),. (25)
The time evolution of ¢02 can be written as
¢%(1) = e 6(0). (26)

with ® the linearized Waldmann-Snider collision operator and n the number
density. Consequently,

C(r)=Hp%: e ™), . 27

According to section 2 the overlap integral a, of ¢ and ¢*” has a value
between 0.5 and 1 for all linear molecules studied. The tensor ¢* therefore
does not belong to the set . An exception is formed by the trivial case of
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single level systems (such as pH, and HD at sufficiently low temperatures) for
which the set ¢ collapses into a single element @® (since there is no W*
dependence).

It is always possible to express ¢* in terms of the set ¢™

according to
%= Zaqﬁoz’- >at=1. (28)

Apart from ¢*", which is an eigenfunction of &, , the elements of the set
& may still be chosen freely. We will define one of its elements, ¢, in such
a way that

¢0§ = aﬂ¢02ﬂ + (l _ ai)l/2¢02p . (29)

Three possible situations may now occur:

1) ¢*" and ¢ are degenerate eigenfunctions of %,. Consequently ¢* 2 will
also be an eigenfunction of %, and an exponential correlation function will
result.

2) ¢ and ¢ are non-degenerate eigenfunctions of #,. Consequently "
is not an eigenfunction of %#,. A two moment description of the correlation
function will result (see below).

3) ™" is an eigenfunction of %, but @"* is not. This would lead to a
multimoment description of the correlation function.

In DPR experiments on ‘‘classical’” linear molecules distinct deviations from
an exponential time correlation function have been found™). Consequently
&%" and ¢™ cannot be degenerate eigenfunctions of . It is now a logical
step to try to construct a two moment description of the decay of &% (e ¢
and ¢ are non-degenerate eigenfunctions of %®;). This will henceforth be
assumed. Essentially this assumption implies that d;"i couples only to tensors in
the plane defined by ¢%" and ¢ itself. The space of tensors to which ¢ can
couple is thus effectively two dimensional. It is spanned by the orthonormal
eigenfunctions ™" and ¢"* or, equivalently, by the orthonormal pair of
tensors ¢ and

¢ = (1-a%)"¢p"" - a,¢™ (30)

(or opposite sign). A geometrical illustration of this situation is shown in fig. 5.

From a numerical analysis of the DPR line shape three parameters can be
determined (see the appendix): the initial slope of the correlation function, the
second derivative at ¢ = 0, and the time integral [ C(r) dz. These quantities can
now be related to effective cross sections. By expansion of the exponential in
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Fig. 5. Geometrical illustration of the second rank in J tensors relevant for a description of VME.
FBR and DPR for the case a, = 1/V2. The tensors ¢*" and ¢ are assumed to be non-

degenerate eigenfunctions of # in the subspace of functions anisotropic in J.

eq. (27) the correlation function can be written as

n2

_ _ﬁ 0, 02
cin)=1 5(¢ : R )01+10

In our two-dimensional space this becomes
A n? A
C1) = 1= n(@)SO2)1 + - (WSO’ + (@A
The first time derivative of C(¢) is therefore given by

dc(r) .
T>:=0 = —n(v),B(03) .

For the second derivative we get

d’C 5
d1§I)> = n¥(L)HS(02) + S(Fo)} -

<¢Oi:@%¢0§>012+.__ .

(31

(32)

(33)

(34)
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Finally the integral of the extrapolated correlation function yields the inverse
matrix element $7'(02):

x

j C(r)di = % $7(0%). (35)

0

It is easily verified that the reduced scalar cross section matrix of # with
respect to the basis (¢, #%P) can be written in terms of S(027) and E(02p)
according to

(vmﬂ C$w)
O’D) &(02D)

_ al®02m)+ (1-a)8(02p) a,(l- a2){S(02m) - @(ozp)})
= <a,(1 )RS0 - BO2) (- a)BO02m)+ a2S(02p) | GO

Straightforward matrix inversion thus yields an expression for §~ (02) n
terms of @(02-”) and &(02p). It will be convenient, however, to express S~ 102)
and @(ozo) in terms of ©(02) and &(027). For “classical” linear molecules it
has been found from FBR and VME (see section 2) that |a,|=2""2. In this case
©(03) = B(02D) (see eq. (36)). so that the resulting expressions are:

§03)= — S02) @7)
(V) 2@(02)@(0277) \_,(0277)
and
1B(%,) = &(027) - S(02) . (38)

For simplicity these expressions will be used instead of those for arbitrary a
since the resulting error is small compared to the expenmemal uncertamtles

Since ©(02#) is known from the VME and ©(02) from the initial slope of
the DPR correlation function (see eq. (33)), it is now possible to calculate
|&(%,) and $7'(02) from egs. (37) and (38), and to compare with the cor-
responding data derived from the curvature and time integral of the DPR
correlation function (see eqs. (34) and (35)).

3.2. Results for classical linear molecules

Measurements of the depolarized Rayleigh line broadening at 293K for
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several linear molecules have been performed by Keijser et al.’); the data have
been reanalyzed (see the appendix). Values for the cross sections &(02) and
|S(%ip)l and the inverse matrix element S7'(03) are calculated from these
measurements according to eqs. (33) to (35). The results are listed in table I11.

Also listed are the values for |&(%,)| and §7'(03) calculated from the
experimental results for ©(02) and &(027) according to eqs. (37) and (38). The
agreement obtained between the two sets of data is very good. In the case of
|@(gsp)| the agreement is even better than one might hope in view of the rather
large experimental uncertainties (estimated 25%). The values for $7(02) are
more accurately known (3%), but here it should be noted that this quantity is
mainly determined by &(02), obtained from the initial slope of the correlation
function.

Essentially the following conclusion has been obtained: a two moment
description of the DPR line leads to results that are consistent with the single
moment description of VME and FBR.

TasLE 111
The cross section ©(027) from the viscomagnetic effect (VME) and results for
&(02), |@(8¢D)] and S~Y(02) from depolarized Rayleigh line broadening (DPR)
data listed in table IV in the appendix. Also tabulated are |&(¢3p)| and S~'(02)
calculated from &(027) and from &(03) according to eqs. (37) and (38) (using the
fact that |a,| = 2-'?), For estimated uncertainties see text.

Gas  ©027)  &(03) &)l 5103

(100% m?) 10%m?»  (100¥m?) (104 sm™)

VME DPR DPR eq. (38) DPR eq. (37)
N, 23.7 35.5 10 11.8 47.0 47.6
CO 32.5 42.8 11 10.3 36.9 373
N,O 64
co, 68 90.2 2 2 220 22
ocs 79 110 23 31 202 217

3.3. Results for hydrogen isotopes

For the hydrogen isotopes a multilevel treatment is in general necessary. We
will refrain, therefore, from analyzing the small departure from a Lorentzian
line shape observed for HD, nH, and nD, at 293K ¥).

The gases HD and pH,, however, have been studied at temperatures low
enough for the single level limit to be reached (for pH, this is already the case
around 293 K, while for HD the temperature has to be lower than 75K). As
shown in figs. 6 and 7, for these gases ©(02) and ©(027) are equal within the
experimental uncertainties at sufficiently low temperatures. This is expected if
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Fig. 6. The decay cross section ©(03) derived from depolarized Rayleigh line broadening experi-
ments and &(02~) from the viscomagnetic effect for pH; as a function of temperature.
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Fig. 7. The decay cross section &(02) derived from depolarized Rayleigh line broadening experi-
ments and &(027) from the viscomagnetic effect for HD as a function of temperature.
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P% does not depend on W? (since then @" = ¢™"). This result thus confirms
the conclusions of subsection 2.3.

4. Possible expressions for the scalar factor of the angular momentum
polarization in viscous flow

In this section, dealing with “'classical™ linear molecules, the various expres-
sions will all be given in a high j approximation. This will simplifyv the
discussion. while the error made is quite small. The tensor ¢®" is thus given by

15,2 JJ
0R2m _ (77 T _p®» 39
¢ (2) gt 9

with a normalization condition for P%:
<(P?,2)2J4)() = <-’4>o . (40)

The information obtained about P% in sections 2 and 3 can be summarized as:
1) P? does not depend on W?.
2) The overlap integral a, between ¢ and ¢™ (see eq. (21)). which is
related to P¥ according to

a, =(P2JH (I, 41

is a constant with an absolute value approximately equal to 27 (note that the
same conclusions necsssarily apply to the scalar factor P2’ of the tensor ¢
defined in section 3).

In the literature the discussion has so far been limited to two simple
expressions for P2

\ L I\ JT
P?" =1 . ¢02 = <—2 ) —<J4>(1)/2 R (42)
and
(J? . . (15\'"*JJ
PZ= Jzo ;o @ (=¢%)= (—2) = (43)

The first expression leads to a, = (J2/(J*)s>=2"" in the high j limit, while
the second implies that a, = 1.
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It would therefore be tempting to conclude that the scalar factor P! is equal
to 1. It has now become clear. however. that this possible solution is by no
means unique. This may be illustrated by the following example. In the
discussion of DPR in section 3 the tensor ¢ has been introduced. 1f P% = 1.
& would be given by (see eq. (29) with a_ =27'%)

15)”2;ﬁ{ - J2

=} — \/z——}. M
2P I @

¢02p = (
Also this tensor has an overlap of 277 with ¢ (see also fig. 5).
For a final conclusion as to the correct expression for P model calculations
of the relevant cross sections will be needed. It will be useful to compare these
cross sections with the results obtained here.

Appendix

Analysis of depolarized Rayleigh line broadening

Measurements of depolarized Rayleigh line broadening have been per-
formed by Keijser et al.”®). These measurements have been reanalyzed in order
to obtain quantitative results for the second derivative of the second time
derivative of the correlation function C(r). Curve fit procedures were used to
determine the first and second derivatives of C(t) at t =0, while a discrete
Simpson approximation was used to evaluate the integral [; C(r) dt. The results
are given in table IV. The notation of the various quantities is consistent with

TABLE IV
Results from the broadening of the depolarized
Rayleigh line from ref. 18 (renalyzed, see the ap-
pendix). Estimated error is 3% in I'/n and I'/n and
50% in I'z/n? (n is the number density).

r , T2
Gas 27— 27— 4m’—
n n

n
(107 m?s™!) (107" m’s™!) (102 m®s7?)

N: 2.36 2.13 0.46
CcOo 2.85 271 0.53
CO, 479 454 15

OoCs 5.01 4.96 1.1
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ref. 18:
2al = - <dift)),=o’ (A1)
2nf = U C(t)dt]-l , (A2)
2 C() o\ 7
4w?l,= (%ﬁi),zo— [(d—%>'=o] . (A3)
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