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A simple method is presented for describing the effects of external magnetic or electric fields on
the transport properties of polyatomic gases over the entire range from the continuum to the
Knudsen regime. Instead of treating bulk and boundary-layer effects separately, both molecular
and surface scattering are included from the beginning in the collisional part of the Boltzmann
equation, and the surface is treated as one component of a multicomponent mixture. A simple
first-order solution of this problem is sufficient to account for the dependence of the transport
coefficients on the Knudsen number in the presence of a field. Detailed results for the longitudinal
and transverse viscomagnetic effects in a single gas are presented, and shown to be in good
agreement with experimental data for CO and N,.

1. Introduction

The effects of magnetic and electric fields on the transport properties of
polyatomic gases have been extensively studied, both theoretically and
experimentally, for over 20 years'’). The basic physical mechanism is well
understood. Collisions between nonspherical molecules in the presence of
gradients produce net anisotropies in the internal angular momentum dis-
tribution (“‘polarization’’), and an external field tends to destroy this polariza-
tion. If the transport cross sections depend at all on the molecular internal
angular momenta—e.g. if the intermolecular forces depend on molecular
orientation —then the transport coefficients will show a dependence on the
external field. The magnitude of this dependence is determined by the depen-
dence of the cross sections on the polarization, and ultimately by the orien-
tation dependence of the intermolecular forces. The effects on measured
transport coefficients are typically a few percent or less. The field strengths
needed to make the effects observable depend on the entirely independent
magnetic and electric properties of the individual molecules.
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At lower gas densities, the collisions of the molecules with the walls become
important, and these collisions may also produce net polarization of the
molecular angular momentum and hence field effects. Such effects have been
observed experimentally, both with temperature gradients and with velocity
gradients®"). Several important differences between the effects due to mole-
cule-wall collisions and molecule-molecule collisions are expected. In the
regime where only molecule—molecule collisions are important (hereafter called
the continuum regime), the dependence of the field effects on the magnitude of
the field strength and on the gas density or pressure are coupled. When only
binary collisions are important, dimensional considerations on the Hamiltonian
show that the transport coefficients of linear diamagnetic molecules, for exam-
ple, depend only on the ratio B/p and not on B and p separately, where B is
the magnetic field strength and p is the gas pressure. However, in the regime
where only molecule-wall collisions are important (the Knudsen regime), the
effects will depend on B and p separately. Moreover, different kinds of angular
momentum polarization are possible, having different tensorial characters, and
there is no reason to expect wall collisions to produce the same predominant
polarizations as do molecular collisions. Recent measurements of the depen-
dence of gas flow in the Knudsen regime on the orientation of the magnetic
field show that the polarizations are in fact quite different™).

We may therefore expect the dependence of the field effects on field strength
and gas pressure to be rather complicated in the transition region between
continuum and Knudsen behavior. The purpose of this paper is to present a
method for characterizing the field effects in the transition region, where
neither molecule-molecule nor molecule-wall collisions are completely
dominant. The method is applicable to situations involving gradients of velo-
city, composition, and temperature, and to mixtures of any number of com-
ponents, but for simplicity we give detailed results here only for the lon-
gitudinal and transverse viscomagnetic effects in a single polyatomic gas.

A standard approach to the transition region is to start with a theory of the
continuum regime and introduce molecule—wall collisions as a perturbation,
treating the Knudsen number Kn as a small parameter, where Kn is the ratio of
the mean free path to a characteristic apparatus dimension'*'®). Such an
approach in effect produces a power series in Kn. Similarly, one can start with
a theory of the Knudsen regime, introduce molecule-molecule collisions as a
perturbation, and produce a power series in Kn™''"). Such series inevitably
diverge or become useless because Kn varies between 0 and o, and so the
expansion parameter is unbounded, whether it is Kn or Kn™'. It may be possible to
avoid these troubles by means of Padé approximants, for instance by using
(1+Kn)™' as an expansion parameter, but such tricks have only an empirical
status.



FIELD EFFECTS IN THE TRANSITION REGIME 439

The present method covers the entire range from the Knudsen to the
continuum regime by the conceptually simple device of considering the solid
surface as one component of a gas mixture, and no expansion in Kn or Kn'is
involved. In principle, this method is perfectly rigorous, but of course the
problem is made no easier by just adding a surface-scattering operator to the
Boltzmann or the Waldmann-Snider equation, which must still be solved. A
simplifying approximation is needed to obtain a solution, and it is this ap-
proximation that is the key to the whole procedure. In order to clarify the basic
ideas and to justify the use of the approximation for such subtle “higher-order”
phenomena as the field effects, it is helpful to consider first how the problem is
approached from the continuum regime'*').

In zero order, the transport is described by the hydrodynamic Navier—Stokes
equations with coeflicients characteristic of the gas alone, such as viscosity,
thermal conductivity, and diffusion. The effects of the walls appear only as
simple boundary conditions for various moments of the molecular velocity
distribution function —that is the gas velocity and temperature match those of
the wall. A first-order correction to this description keeps the Navier-Stokes
equations intact, but recognizes the existence of a boundary layer next to the
wall whose thickness is of the order of a mean free path, by modifying the
boundary conditions. A viscous slip velocity and a temperature jump are
introduced as boundary conditions, which are equivalent to linear extrapola-
tions of the gradients in the bulk region of the gas a distance beyond the wall of
the order of a mean free path. The slip or jump distances can be calculated (not
an easy calculation in general) if a model of molecule-wall scattering is
assumed, but they are more often left as adjustable parameters. In a second
order of correction, more attention is paid to the boundary layer by performing
other than a linear extrapolation, that is by allowing nonlinear variations of
moments of the distribution function within the boundary layer. More detailed
boundary conditions at the wall can be found, in principle, from a surface
scattering model. However, these refinements require changes in the hydro-
dynamic equations in order to match the conditions in the boundary layer with
those in the bulk region. New terms involving higher derivatives and products
of derivatives are introduced, and the Navier-Stokes equations are replaced by,
for example, the Burnett equations. There is still some difference of opinion on
how to treat polarization at this level. Can it be introduced via the higher-order
hydrodynamic equations'*'"”), or must it appear via the boundary layer by wall
collisions'®)? The procedure can in principle be continued to higher and higher
orders, introducing more details in the boundary layer and more terms in the
hydrodynamic equations (to produce, for example, the super-Burnett equa-
tions), but obviously becomes extremely complicated even if it converges.

However, instead of dividing the problem into bulk and boundary-layer
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parts which have to be matched, we can imagine treating the problem as a
whole from the beginning by putting surface-scattering terms in the collisional
part of the Boltzmann or Waldmann-Snider equation, and then constructing
solutions by an expansion or moment method with a cleverly chosen set of
basis functions. This is formally analogous to the Chapman-Enskog procedure
of classical kinetic theory, which uses Burnett functions (Sonine or Laguerre
polynomials multiplied by spherical harmonics) as a basis set"*”’). This is still
not an easy procedure to carry through in detail, but in a first order of
approximation it is equivalent to taking the result for a multicomponent gas
mixture in the continuum regime and letting the solid surface be one com-
ponent of the mixture. This component has some special conditions on it, such
as large mass, no contribution to fluxes, and an external body force to keep it
motionless, but is otherwise considered in the same way as the other com-
ponents. The dependence of any transport property on the Knudsen number
then arises through its dependence on the “mole fraction” of the solid
component. The first approximation is thus easily obtained, and in a sense gives
a model for interpolation through the transition region.

The advantage of the model is that it gives the behavior of transport
coefficients throughout the entire range from the continuum regime to the
Knudsen regime, in the form of a set of scaling rules involving the Knudsen
number. In the case of gas mixtures, the dependence on composition is also
given throughout the entire range. These are precisely the properties that are
likely to be given accurately by just a first-order theory, because only the
counting of collisions is involved and not their detailed nature. The details of
the molecule—surface collisions are absorbed into effective cross sections, which
then appear as parts of adjustable constants in the final formulas. The
geometrical parts of the problem - the orientation of the external field, whether
flow occurs through a circular or a rectangular duct, etc. —are handled initially,
before the conditions of the model are invoked. For example, to obtain the
result for a single gas at all Knudsen numbers, we first write down the
equations for a binary gas in the continuum regime, subject to the geometric
features for the particular problem, and then pass to the model limit by taking
one component of the binary mixture as the solid surface. The model has had
substantial success for a number of problems where no external field is
involved™), and the foregoing discussion suggests that it should be equally
applicable to field effects.

The model has two main disadvantages. The first is that it is not improvable
in any simple way. Although it is possible to imagine how higher ap-
proximations might proceed in principle, they would be very difficult to carry
out in practice. One symptom of this feature is that in some field-free flow
problems no terms involving In Kn appear in the model results, although they



*

[

FIELD EFFECTS IN THE TRANSITION REGIME 441

should be there in principle®™?"). Such terms arise from special kinds of
correlated collisions and have never turned out to be of any numerical
importance, but their absence is a reminder that the model is only a first
approximation. For field effects the analogue is the production of additional
polarizations in the boundary layer due to sequences of alternating molecule—
molecule and molecule-wall collisions'®”). The second disadvantage is that the
model absorbs the details of molecule-wall collisions into adjustable constants,
and does not furnish an exact procedure for their calculation. That is, even if
the exact molecule-surface scattering behavior were known, it would not be
possible to calculate these adjustable constants in other than a fairly crude
approximation. This is more a flaw of principle than a practical disadvantage,
however, because the molecule—surface scattering is almost never known with
any precision, so that even in an exact theory it would have to be handled in
terms of adjustable parameters.

The overall results take the form of a set of scaling rules. These are
particularly simple in the cases worked out in detail here, which are the
viscomagnetic effects in a single polyatomic gas, and can be summarized briefly
as follows. In the continuum regime the relative change in the quantity
measured, SR/R, is equal to a sum of functions F; of B/p, one for each tensorial
type of polarization produced by molecule-molecule collisions,

3R/R = hiF,(B\BIp)+ h5Fy(B3BIp) + . ..
= 3 hiF(B!BIp), M

where the h¢ and B¢ are parameters giving the magnitude and position of the
effect in terms of cross sections and other molecular properties in the limit of
Kn = 0. Wall collisions change this expression to the form

®R/R)(1+aKn) = > hF(BBIp) + (Kn)’ X ¢,G,(v,BIp), @)
where

h, = h°(1+ bKn) ™", (3a)

B = Bi(1+bKn)", (3b)

¢, = 1+ ¢Kn)', (3c)

;= ¥i(1+¢Kn) ", (3d)

Wall collisions thus affect 8R/R in three ways. The first is a field-free slip effect
that reduces everything by a factor of (1+ aKn)™', in which a is a dimensionless
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slip parameter that can be found independently from flow measurements in the
absence of a field. The second effect scales the parameters of the continuum
effect by factors of (1+ bKn)™', which represent the destruction by surface
collisions of the polarization produced by molecule-molecule collisions. It is
interesting that the same factors affect both the magnitudes (h;) and the
positions (B;) of the field functions F,. The dimensionless parameters b,
measure the ratio of the effectiveness of surface collisions to gas collisions in
destroying polarization of the ith type. These first two effects produce initial
deviations from continuum behavior that are linear in Kn. The third effect adds
new terms due to the production of polarization by surface collisions, and its
subsequent destruction by both molecule and surface collisions. Each tensorial
type of polarization produced by surface collisions gives rise to a new field-
dependent function G, and the surface production as a whole is quadratic in
Kn. In addition, there are factors of the form (1+ c,Kn)’l in which the
dimensionless parameters ¢; measure the ratio of the effectiveness of surface
collisions to gas collisions in destroying polarization of the jth type that was
produced by surface collisions. The same factors affect both the magnitudes
and positions of the field functions G, The parameters ¢} and y;, which are
analogous to h} and B9, give the magnitudes and positions of the surface-
produced polarization in terms of properties of the molecules and the surface,
and of their interaction.

Thus surface collisions introduce four kinds of new parameters to describe
the deviations from continuum behavior. There is first an overall slip parameter
a. Then for each kind of molecular-produced polarization there is a parameter
b, describing its destruction by surface collisions. For each kind of surface-
produced polarization there are two parameters: ¢; describing its production
by surface collisions and its subsequent destruction by molecular collisions, and
¢; describing its destruction by surface collisions. In terms of an expansion for
dR/R in powers of Kn, a and b; appear first with the linear terms, ¢; appears
first with the quadratic terms, and ¢; appears first with the cubic terms. Thus
the destruction of polarization by surface collisions first makes its appearance
as a first-order slip effect, whereas the production of polarization by surface
collisions appears in the deviations from first-order slip. But expansions in
powers of Kn or Kn™' are neither necessary nor desirable, because the form
given by eq. (2) covers the entire range.

2. Kinetic-theory model

Here we outline the general steps and assumptions made in treating the solid
surface as one component of a gas mixture, before taking up applications to
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specific cases. It is convenient to consider first how the procedure goes in the
absence of an external field. To treat a gas mixture containing » species we first
write down the transport equations for a mixture of »+1 species. These
equations, obtained from standard kinetic theory, are of three types'®). First
there is a set of diffusion equations, usually written in the Stefan-Maxwell form,
which are the equations that describe relative mass transport. Next there is an
equation of mementum transport, essentially Newton’s second law for an element
of the mixture, including terms for viscous stress (Navier—-Stokes equation).
Finally there is an equation of energy transport, including terms for thermal
conduction. We can ignore the last equation here because we are going to consider
only isothermal systems. The two other equations are independent in first
approximation, in the sense that there are no diffusion terms in the equation of
motion, and no terms corresponding to the viscous transport of momentum in the
diffusion equations. This independence is the justification for assuming simple
additivity of diffusive and viscous components of the flux of any species of the
mixture. It is this additivity that makes the results simple in the first ap-
proximation, and it is deviations from this additivity that make the improvement
of the results so difficult.

The procedure is thus as follows. The total flux J; of a species i is taken as
the sum of a diffusive component, J;,, and a viscous component, J, ;.

‘IiniD+Jivisc' (4)

It is further assumed that the viscous component of the flow is non-separative,
so that

Ji vise xi']visc ’ (5)

where x; is the mole fraction of species i and J,, is the viscous flow of the
mixture as a whole. We find J,, . by solving the Navier-Stokes equation for the
particular geometry of interest. For steady-state flow in the x-direction through
a long straight tube, for example, only the x-component of J,, is nonzero, the
rotational and dilatational terms in the Navier—Stokes equation are zero, and

the result is®)

ap (azuvisc 82uv'sc

=g —=4 . ) = constant , 6

ax K ay2 8z* ©)
where 7 is the viscosity, u, . =J,./n is the x-component of the viscous

component of the velocity, and n is the number density. For no-slip boundary
conditions this equation can be integrated to yield
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B,d
uvisc:__i)_!)-’ (7)
7 dx

where B, is a geometrical constant whose value depends on the cross-sectional
shape of the tube. The value of B, is r*/8 for a circular tube of radius r, and is
r*/3 for a rectangular tube of width w and thickness 2r < w ). Any slip arises
from the diffusive component of the flux, J,,, which we find from the
Stefan-Maxwell diffusion equations. For an isothermal mixture of v + 1 species
(counting the surface as one species), these equations are'*™)

v+1 v+1

Zﬁ(um— up)= —in—xi(l —%)Vlnp+% [nE~&Z n/.F,.], ®)
j=1 i P j=1

where u;,=J;p/n; is the diffusive component of the velocity of species i, D is
the diffusion coefficient of species i and j in the mixture, p; is the mass density
of species I, p is the total mass density of the mixture, and F; is the external
force per particle on species i. The three terms on the right-hand side of eq. (8)
represent concentration diffusion, pressure diffusion, and forced diffusion,
respectively. Eq. (8) is the ith member of a set of v + 1 equations, of which only
v are independent (any one of the set is equal to the sum of the other v
equations).

We now let species v+ 1 in eq. (8) represent the solid surface, and impose
the following conditions:

1) The surface species are motionless and uniformly distributed, so that
u,= 0 and Vn_= 0, where the subscript s denotes the surface.

2) The quantities n, p, p,, and x; appearing in eq. (8) are not the actual gas
density, pressure, etc., but include the surface species in the counting. To avoid
confusion, we use primes on quantities when the surface species are counted as
molecules and drop the primes when only the actual gas molecules are
counted; thus we write

n'=n+n, p'=p+nkT, x.=x(n/n), etc, ©)

where k is Boltzmann’s constant. However the counting is done, it is a result of
kinetic theory that”*)

n'Dj=nD,. (10)
3) The surface species are held motionless by an external force that balances

any pressure gradients in the gas. A simple force-balance argument leads to the
expression®"*")
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nF.=Vp, (11)
where p is the actual gas pressure, and we assume no external forces act on the

other species.
Applying these conditions to eq. (8), we obtain after some algebra the

result’?)
Z%C[(um—";‘D)+§"i0:_vxi_xiV1“p7 (12)
j=1 i iK

where we have defined the Knudsen diffusion coefficient D,y as
D,y = (n/n)D; . (13)

From the kinetic-theory formula for the binary diffusion coefficient between a
molecular species i and a very large and heavy species s'*), we find to a good
approximation that D, can be written as

D, ~ constant(T/m,)""”* . (14)

In eq. (12) most of the complicated parts of the pressure-diffusion and forced-
diffusion terms have cancelled out because of eq. (11). From egs. (4) and (5) we
find

Uip = U; — Uy » (15)

which on substitution into eq. (12) yields the final result

v

XX;
E Hl (u,— "j) +

i=t Hij

X;

D,y =Vx;—=xVinp. (16)

(ui - uvisc =
All v equations of this set are independent, because the equation for the
surface species has been explicitly eliminated. From the kinetic-theory formulas
for diffusion coefficients we find that D; in a multicomponent mixture is, to a
good approximation, equal to Dj; in a binary mixture of just species i and j
19,20,28)

For the special case of a single gas in steady-state flow through a long
straight tube, we can combine eq. (16) with eq. (7) for u, and find the flux to
be

1
J=nu=——(DK+

i (P

: 17
n ) dx (17a)
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I Bp dp .
= - ET (1+ aKn) i’ with aKn=2nD,/Bp. (17b)

Here we see explicitly that the viscous (Kundt and Warburg) slip is accounted
for by the Knudsen diffusion coefficient Dy. The viscosity n refers to the gas
only. The surface species does not contribute directly to n because it is
stationary, and its influence on % through molecule-surface collisions has
already been taken into account through the no-slip boundary condition used
in deriving eq. (7) for u,,.

The imposition of an external magnetic or electric field greatly complicates
the formal appearance of the transport equations. The transport coefficients
become tensors instead of scalars: the viscosity coefficient becomes a tensor of
rank four with five independent components, and each diffusion coefficient
becomes a tensor of rank two with three independent components. For
example, if the field is in the z-direction, considerations of spatial symmetry
require that a diffusion tensor have the form™)

D' -D" 0
D=|D" D' 0]. (18)
0 0 D

Fortunately, the field effects are small in magnitude, so that a perturbation
treatment is permissible, which greatly reduces the complexity of the results. It
is easiest to do this on a case-by-case basis, and we will present the formal
results only for the viscomagnetic effects in a single polyatomic gas and in a
binary mixture of a polyatomic gas and a noble gas. In all cases the gas is in
steady-state flow in the x-direction down a tube whose cross section has the
shape of a slit of thickness 2r, and a magnetic field is applied in the yz plane.

We consider first the longitudinal effect in a single polyatomic gas. The
magnetic field is applied in a direction along the width of the slit. The change in
the transport coefficients causes a change in the flow, which is detected by the
unbalance of a flow-resistance bridge in which the tube is one leg™*). In
practice the flow through the tube is kept constant and the change in the
pressure drop, 8(Ap), is measured. This change is caused by a change 67 in the
viscosity and a change 8Dy in the Knudsen diffusion coefficient that describes
the slip. The geometry of the flow and the field determines which component of
7 is represented by 6n and which component of Dy is represented by 6D,
where the operator & represents turning on the field. If we operate on eq. (17)
with &, holding J constant, we obtain
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Byp 8 B

0= (5DK—;’p—")Ap+ (DK+-£)5(AP), (19)
nmn n

which can be solved for the measured relative change in the pressure drop,

é(A D D
(p)<]+n K):@_(n K>8DK. 20)
Ap Byp/ m  \Bep/ Dy

The transport coefficients for this geometrical arrangement are”?')

8Dy _ Dy — Dy(0) (1a)

Dy Dy )
& >—=n(0
o _my—n( ), 21b)
7 7(0)

where D (0) and 7(0) are the zero-field values, and the notation of Coope and
Snider™) is used for the viscosity components. Notice that in the continuum
(high-pressure) limit, eq. (20) reduces to 8(Ap)/Ap = (n5— n)/n, as it should.
This is as far as we can go without explicit kinetic-theory expressions for the
transport coefficients.

In the transverse viscomagnetic effect, the magnetic field is applied per-
pendicular to the width of the slit, and a measurement is made of the small
pressure difference that develops across the width of the slit, Ap”. That is the
field induces a flow perpendicular to the main flow, which is eventually stopped
by the pressure difference it generates because the sides are closed"). The
initial transverse flow is proportional to the main longitudinal flow, and
involves off-diagonal parts of the transport coefficient tensors. The reverse flow
opposing it is proportional to Ap" and involves the diagonal parts of the
transport coefficients. The result at steady state is

Ap" D, & D, 8D
L (1+—" “)z—”—(" K) K. 22)
Ap Bp/ m \Bp/ Dy

This has the same appearance as the corresponding formula for the lon-
gitudinal effect, eq. (20), but the coefficients are different'"*):
8Dy Dy
Dy Dy(0)’

(23a)
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5 _
on_ M (23b)

The geometric coefficients B, are the same in both eqgs. (20) and (22) because
B,=r*/3 for flow between two closely spaced surfaces regardless of the
direction. Notice that in the continuum limit eq. (22) reduces to Ap"/Ap =
n1/7, as it should.

The trick of generating the field-effect equations from the field-free equa-
tions by applying the operator & corresponding to turning on the field is
generally applicable, provided that the effects of geometry are known. It is
especially convenient for discussing mixtures. We could have obtained the
above result for Ap" in this way from eq. (19) by recognizing that in this case
5(Ap) would be Ap" and that 8Dy and &7 would be D and 77, respectively,
from the geometry of the experiment. We will obtain the general formulas here
for the transverse effects in a binary mixture of a polyatomic gas and a noble
gas in this way, but will defer comparison with experimental results for future
work. In place of eq. (17) for a single gas we have two equations:

d B d
atd 2(ul~u2)+£ﬁ——-ic—'—ﬁ<l+—°p)~[—), (24a)
Dy Dy dx p nD g/ dx
ﬁ(u2~ul)+ﬁt—2=—%—ﬁ<l Bop )d”_ (24b)
Dy, Dy dx p nDy/ dx

Application of the magnetic field produces both a transverse pressure
difference, Ap", and a transverse composition difference, Ax', even if the
flowing gas mixture is initially uniform in composition'). We now apply the
operator & to these equations and make the following identifications: éu, =
du,= 0 because of steady state operation; 8(Ap)=Ap" as for a single gas;
8(Ax,)= Ax", but Ax, =0 because no longitudinal concentration gradient is
imposed; 8D,,= D', 8D, = DYy, and 8D, =0, if we take species 1 as the
polyatomic gas and species 2 as the noble gas; 6n = 0| as for a single gas, but
now the viscosity refers to the gas mixture; and x,, X,, and p can all be taken as
constant within the first order of small quantities.
After considerable algebra, we obtain the following results:

Ap" D 7 D D\ /Dy Dy\"' DY
L(I‘Fl—l{):ﬁ—l—x,(n K><1+ 12)( 1K+ ) u( (25)
Ap Byp n Byp Dy D, Dy Du(
PAXE B (- _) (327, Do (R, Du) " D)

Ap Dy D, Ap D Dy Dy’ Dy
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D ~ -1 tr
_x1x2(1+_]2>&(%+& 215’ (26)
x/ Dy "Dy Dy’ Dy
where
|
—= L + i . (27)
Dy 1K 2K

Some simplification can result from the use of eq. (14) for the Dy, but the
explicit expression for n, of a mixture is inherently complicated™*). It will be
sufficient here to point out a relation between Axy and Ap" in the continuum
limit. At high pressures, D,,/Dy and DY/D  approach zero, but DY,/D,,
approaches a constant, as can readily be seen from the explicit expressions™) by
setting the mole fraction of surface species to zero. From eq. (26) we therefore
obtain

pAxy my”—my* Ap" Dy
5,5 (i) (3, o) (28)
p X\m =T Xph, p 12

in which we have used eq. (14) for the D,. This is a relation that is capable of
direct experimental test. It is the kind of relation that is eastly obtained by the
present model, but that is difficult to obtain by more conventional kinetic-
theory approaches. This is indicated by the fact that slip terms appear in eq.
(28), as signaled by the presence of the m” in the first parentheses, even
though it is a continuum result. In this model slip always appears through the
Dy, which are the source of the m}” terms. This rather unusual continuum slip
is related to the phenomenon of diffusive slip, first investigated by Kramers and
Kistemaker in the absence of an external field*).

Further progress requires explicit expressions for the field-dependent transport
coefficients D, DY, n%, n7, and D},. Because of the complexity of 3 and | for
mixtures consisting of two gas species and one surface species, we limit the
discussion from here on to single gases. We implicitly make the customary
assumption that the field affects only the molecular motion between collisions,

and not the collisions themselves.

3. Viscomagnetic effects in single cases

We next need expressions for D*, D", 53, and 7] in terms of cross sections
for the production and decay of polarization by molecular and surface col-
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lisions. The nature of the polarization produced by molecule-molecule col-
lisions has been determined from viscosity experiments in the continuum
regime***'3%37) “and it is only necessary to add a term for the decay of the
polarization by surface collisions to the theoretical formulas. The possible
polarizations produced by surface collisions have been discussed and
classified®®**"), and experimental information is now becoming available as to
which types of polarization are important for real systems®'>"). However, in
the following analysis of experimental data, we first seek conclusions that can
be drawn without explicit assumptions about the nature of the surface-
produced polarization.

3.1. Longitudinal viscomagnetic effect in CO

Here the dominant polarization produced by molecule-molecule collisions is
of the [J]? or 027 type®), and the effect of a magnetic field on the viscosity has
the same form as for a mixture of a polyatomic gas (species 1 ) and a noble gas
(species 2), but there is no contribution of species 2 to the viscosity because
species 2 is really the surface. For simplicity we assume that the only effect of
species 2 is to cause decay of the polarization produced by 11 collisions. The
result can be written as®)

n,—n0) _

a0 hf(2BBIp) . 29)

where the field-dependent function is

x2

= 30
f@ =1, (30)
and
h= xP*5,,& () 31
S(20),,[x,5,@027),, + x,5,8(027),,] ’
kTih
— — xlgl‘LN /_ — . (32)
x,0,8(027),, + x,0,8027),,
The average relative speeds are
o, = BkT/mu)"”, (33)

in which the reduced masses p; are u,, = m;/2 and p,, = m,, because m,>m,.
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Here &(3,),, is an effective cross section for the production of the 027-
polarization by 11 collisions, &(20),, is a cross section related to the field-free
viscosity 17(0), and &(027),, and &(027),, are effective cross sections for the
decay of the 02m-polarization by 11-collisions and 12-collisions, respectively.
The dimensionless scalar factor P? depends on the angular momentum, but its
value does not concern us here because it will eventually be absorbed into an
adjustable parameter. The quantity B(B/p) is the ratio of a Larmor precession
frequency to a collision frequency for polarization decay; most of the factors in 8
will be absorbed into an adjustable parameter and so their details do not matter.

We define the Knudsen number as //2r, where ! is the mean free path and 2r is

the slit thickness, and take ! from the field-free viscosity as'®™)
8 2kT\"* (0
=22 70 (34)
S\mm, p

We can then parameterize the surface decay of polarization by a dimensionless
parameter bg,, defined as

nkT &(027),,

21/2 &027),,’ 3

b,Kn =

which is a measure of the relative effectiveness of surface collisions compared
to gas collisions in causing the decay of polarization. The quantities h and 8
can then be written as explicit functions of the Knudsen number,

h(l

= 36
1+ bp,Kn (36)
B()
=—, 37
P 1+ b,Kn 37)

where h°= P&X2.),/3(20),,6(027),, and B°= guykT/hi,,&(027),, are the
constant limiting values of h and B determined in the continuum regime
(Kn = 0).

We have already similarly parameterized the field-free slip contribution to
the longitudinal viscomagnetic effect, which is given by the factor nDy/B,p in
eq. (20), by the dimensionless parameter a defined in eq. (17b), which can be
determined independently by field-free flow measurements as a function of
pressure, according to eq. (17).

The polarization produced by surface collisions appears through the Knud-
sen diffusion coefficient Dy. We assume for simplicity that only a single type of
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polarization is important, as is usually the case for gas collisions, but do not
specify its type. Then we can write

Dy — D0
_J(D,(—(()l)(_(_) = — ¥ L(vBIP) . (38)
where the possible forms of the field function L(x) have been discussed and
classified®™"). These functions also depend parametrically on a surface ac-
commodation coefficient and show damped oscillations™'). Whatever the
detailed nature of L(x) may be, the quantities ¢, and y, will have the
following forms:

(constant)x,,,&*(prod),,

Yo = = p — , (39)
M 2(10),0x,0,,S(dec),, + xzvu@(dec)l:z]
(constant)x,
(40)

Mo x,0,,S(dec),, + x,0,,&(dec),, '

where ©(prod),, is the cross section that describes the production of polariza-
tion due to collisions between species 1 and 2, &(10),, describes Dy(0), the
field-free Knudsen diffusion (slip), and &(dec),, and ©&(dec),, describe the
decay of the surface-produced polarization by 11-collisions and 12-collisions,
respectively. These forms follow because we are essentially only counting
collisions. We again parameterize the surface decay of polarization by a
dimensionless parameter b, defined as

n.kT ©S(dec)
b Kn=_—2— ——12 41
Che 2"2p S(dec),, @1

which is a measure of the relative effectiveness of surface collisions compared
to gas collisions in causing the decay of the surface-produced polarization. The
quantities ¢, and v, can then be written as explicit functions of the Knudsen
number,

b, Kn

- , 42

"M 1+b,Kn (42)
y()

Voo = pa 43)

1+ b,Kn’

where v}, = (constant)/5,,&(dec),, is the constant limiting value of v, in the
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continuum regime (Kn = 0), and

. _ (constant)&*(prod),,
o ©(10),,5(dec),,

(44)

is the constant limiting value of ¢, in the Knudsen regime (Kn— ).
Inserting the foregoing results back into eq. (20) for the longitudinal vis-
comagnetic effect, we obtain

8(A h°
(—]2(1+aKn)=— f(
Ap 1+ by,Kn

2B'Blp ) . ab, . (Kn)y’ L( v\,BIp >
1+ b,Kn 1+b,Kn 1+b,Kn/
(45)

This is the final result when only one kind of polarization produced by gas
collisions is important, and only one kind of polarization produced by surface
collisions is important. Production of other additional kinds of polarization just
introduces additional terms of the same general form. It is easy to see that eq.
(45) has the correct limiting behavior in the continuum and Knudsen regimes.
When Kn = 0 (continuum regime) eq. (45) correctly reduces to

200 _wsep'mip), (e
p

so that measurements at different values of B and p scale together on a single
curve when plotted against the single variable B/p. This behavior is predicted
by more elaborate kinetic theory, and has been amply confirmed by experi-
ment'®). When Kn -« (Knudsen regime) eq. (45) reduces to

3(dp) .
Tap YL (e,B) é7)

where

y® constant

=—Hf = — 48
Cra b, Knp nkTi,S(dec), 48)
is a constant. Thus 8(Ap)/Ap in the Knudsen region is independent of pressure
and depends only on B, a behavior that is also predicted by other kinetic-
theory calculations®*'). Eq. (45) may be regarded as a simple interpolation
formula between these two limiting regimes.
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Some meaningful comparison with experiment is possible even if the func-
tion L(x) is not known explicitly. For large B/p both f(x) and L(x) should
approach limiting (saturation) values. From eq. (30) we see that f()= 1, and
we can take L(=) as some unknown number. Then the saturation value of the
longitudinal viscomagnetic effect is predicted to have the following dependence
on the Knudsen number:

A 0 x K 2
OO (1 ey - [ab i LKD)
Ap 1+ by,Kn 1+b,Kn

(49)

Notice that if surface collisions were without any effect whatsoever, the
right-hand side of eq. (49) would be simply the constant —h,, and the entire
pressure dependence of the saturation value would be due to the field-free slip.
If surface collisions were ineffective in the production of polarization but
caused decay of polarization, then a plot of [8(Ap),/Ap]'(1 + aKn)™' vs. Kn
would give a straight line of slope by,. Deviations from linearity of such a plot
would indicate the production of polarization by surface collisions, and a
change in sign of 6(Ap),, with changing Kn would be a certain indication of
surface production.

All these predictions of the model are borne out by the measurements of
Breunese et al. on CO ). We have fitted eq. (49) to these measurements, plus
the earlier measurements of Hulsman et al.*) at smaller values of Kn, with the
results shown in fig. 1. This is essentially a three-parameter fit of the Breunese

| T T T oo T Iy T v Ty

co

36(Ap)sqt
Ap

10

_0‘2 L lllllll

SR | e sl vl

40.1 | 10 100

Kn™!
_

Fig. 1. Saturation value of the longitudinal viscomagnetic effect for CO at 295 K versus the inverse
Knudsen number. The symbols are the measurements of Breunese et al. (Kn™!<20) and of
Hulsman et al. (Kn™' > 20). The curve is calculated from eq. (49) with the parameters listed in table
I
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data, because h° is largely determined by the higher-pressure measurements of
Hulsman, and a is taken from independent field-free flow measurements. Of
the three freely adjustable parameters by,, b,,, and ¢, L(), the parameter by, is
essentially determined by the higher-pressure measurements; this can be seen
from eq. (49), where b,, and ¢, L() occur in a term that is of order (Kn)’
different from the term in which by, occurs. In the least-squares fitting, the
measurements of 6(Ap),/Ap were given weights inversely proportional to their
magnitudes, to avoid virtually discarding the low-pressure points of small
magnitude. The parameters obtained are given in table I, including the con-
tinuum values from Hulsman’s work. A small adjustment (<10%) has been
made in ¢, L(*) to improve the agreement with the field dependence of
8(Ap)/Ap, which is discussed below.

The agreement in fig. 1 is quite good. It could even be improved somewhat
by introducing another surface-polarization term. Although experiments on the
similar molecule N, have shown that at least two kinds of surface-produced
polarization are important”®), an improved agreement here would prove
nothing because two new adjustable parameters would have to be introduced
with the new term.

We conclude that the present model predicts the dependence of the satura-
tion value of the longitudinal viscomagnetic pressure difference on Knudsen
number in reasonable agreement with experiment, subject to the simplifying
assumption of only one dominant form of surface-produced polarization. In
addition, the model gives the correct limiting behavior in the Knudsen regime
and in the continuum regime. This success clearly supports the validity of the
model.

Some comparison with experiments on the field dependence of the vis-
comagnetic effect can also be made without even knowing the type of surface
polarization that is produced. It is only necessary to assume that a single type
of surface-produced polarization is dominant, in order to obtain a scaling rule
from the model. If we define a surface production quantity A as

TABLE |
Parameters from fitting the longitudinal viscomagnetic effect in CO.

10°h° 8Y! a bo by 10%5L(*) L(®)  (yp)™
(mT/Pa) (mT/Pa)
370®  7.88® 599 58 79 0.9 1 0.35

® Hulsman’s value is 3.63%).
® Hulsman’s higher-pressure measurements™).
© Hulsman’s field-free flow measurements®).
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8(Ap) h’
Ag=——"(1+aKn)+
ST Ap (1+ aKn) 1+b92an(

0
28"°B/p >’ (50)
1+ by,Kn

then eq. (45) predicts that the quantity Ag(1 + men)/(Kn)2 will be a function of
the single variable (B/p)/(1+ b, Kn). This can be tested with the field-depen-
dent measurements of Breunese et al.’) at their three largest values of Kn, as
shown in fig. 2. The upper plot shows the original data, and the lower plot
shows the data scaled as suggested by eq. (45). The reduced data do fall
approximately on a single curve, within experimental scatter. Note that no new
parameters have been introduced in this test. From fig. 2 we can conclude that
the scaling predicted by the present model is consistent with the measured field
dependence, but the sensitivity of this test and the accuracy of the measure-
ments are not sufficient to tell us anything very definite about the nature of the
surface-produced polarization.

We can proceed still further without knowing the specific type of surface
polarization produced, if we make the additional plausible assumption that the
surface accommodation coeflicient occurring in L(x) is unity. Then the
mathematical form of L(x) is determined™*"); its computation is discussed in
the appendix. The final adjustable parameter y‘;,q is found by requiring that the
maximum in L(x) occurs at the correct field strength in fig. 2b, and its value is

T ||ITIIII T lllllfl[ T T 1 1T 1T1TT
olf €O
v vKn=344
-
5382p) Wa"
| —Ap o A
- ore
—Ol 1 AIIIIALl 1 | [ R
0.0 B (o] | T |0
T T IIIIIII T T T T 1110
4} CO s ]
AA“; ZA e
'O3As(l+bqun)]\2_ S |
v
(Kn)?2 | 72 il
A
AL ol Pt
O.l B/p | mT/Pa 10
I+bpqKn
—_—

Fig. 2. Test of the predicted scaling rule for surface-produced polarization for the field dependence
of the longitudinal viscomagnetic effect for CO at 295K. The upper plot shows the data of
Breunese et al. at the three lowest pressures, and the lower plot shows how these scale together as
predicted by egs. (45) and (50). The symbols correspond to the first three points in fig. 1. The
curves are drawn on the assumption that the surface accommodation coefficient is unity.
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given in table 1. The calculated curves are shown in fig. 2, and the agreement
with the measurements seems very reasonable in view of the simplifying
assumptions made. In particular, a predicted maximum and minimum are
clearly noticeable in the reduced data plotted in fig. 2b. However, the physical
interpretation of y‘;q requires knowing the specific type of surface polarization,
which cannot be determined from these data alone. Measurements of the
dependence of 8(Ap)/Ap on the orientation of the field are needed for this
purpose ).

3.2. Transverse viscomagnetic effect in N,

Here the dominant polarization produced by molecule-molecule collisions is
again the [J]* or 027 type, and the results are similar to those for CO. The
viscous contribution can be written as™)

T hg(8Bp). 1)
n(0)

where the field-dependent function is

N
g(*)”1+x23 (52)
and
h(]
[ — (53)
1+ by,Kn
BO
B=—"777, (54)
1+ by,Kn

in which the definitions of h°, B°, and by, are the same as in the case of CO.
(The numerical values for N, will of course be different from those for CO.)
The diffusive, or surface-produced, contribution can be written as (assuming
that only one type of polarization is important)

tr

DK
D)~ ~ Uy T(v,4BIP) . (55)

where the form of the field-dependent function T(x) need not be known.
Whether the polarization that is most important in the transverse viscomag-
netic effect is the same type as that in the longitudinal effect is not known, but
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the form of the scaling in which Kn appears will be the same as given in eqgs.
(42) and (43).
We can thus write the final result in the form

A tr ho oB b o K 2 0 B
——p—(1+aKn)=— g(B /p >+apqll’pq( n) T( Y pq /P>'
Ap 1+ byKn ® \1+ b,Kn 1+ b, Kn 1+b,Kn

(56)

Again production of additional kinds of polarization just adds further terms of
the same general form to this expression. This expression reduces to the correct
limiting forms in the continuum and Knudsen regimes. When Kn =0, Ap"/Ap
is a function of the single variable B/p, and when Kn—%, Ap"/Ap is in-
dependent of pressure and depends only on B.

Comparison with experiment is more difficult because we cannot escape the
shape of T(x) by passing to a saturation limit at large B/p. Measurements of
Ap“/Ap as a function of B/p show a maximum, whose location and height both
depend on the details of T(x). It is first necessary to extrapolate (Ap"/Ap),.,
and (B/p),,,, to Kn =0 to determine h° and B°. The value of a is known from
independent field-free flow measurements. If surface collisions were without
any effect whatever, then (B/p),,.., would be independent of Kn and (Ap"/Ap),,..
would vary as (1+ aKn)™". If surface collisions produced no polarization but
caused decay of polarization, then a plot of (Ap"/Ap)...(1+aKn)" vs. Kn
would give a straight line of slope by, and intercept —h°/2 (because g, = 1/2).
Deviations from linearity of such a plot would indicate the production of
polarization by surface collisions. Similarly, a plot of (B/p),,., vs. Kn would give
a straight line of slope by, and intercept 1/8°, and deviations from linearity
would indicate the production of polarization by surface collisions. The
measurements of Breunese on N, show all these features''), and the parameters
obtained are given in table II.

To find the remaining parameters, we define a surface-production quantity
A as

TABLE 11
Parameters from fitting the transverse viscomagnetic effect in N,.

10°h° (BO)_I a boa bpq 104([1;‘, Tmax  Tmax (')’qu)_1
(mT/Pa) (mT/Pa)
2.68® 2.83@ 59® 4.2 5 6 0.680 2.6

@ Breunese's values'!).

® Hulsman’s field-free flow measurements™®).
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(57)

A tr hO OB
—AgEL(1+aKn)+ g( A Blp >
Ap 1+ b, Kn® \1+ by,Kn

According to eq. (56), a plot of (Kn)*/(4%),.. vs- Kn should be a straight line
whose slope gives b, and whose intercept at Kn=0 gives ¢, T, The
parameter values obtained in this way, which are given in table I, are not very
accurate because of the error amplification involved in forming 43.

Once b, is known, the model predicts a scaling rule. The quantity Ag(1+
bMKn)/(Kn)2 should be a function of the single variable (B/p)/(l+ b, Kn),
provided that only a single type of surface-produced polarization is dominant,
according to eq. (56). This can be tested with the measurements of Breunese'")
at the four largest values of Kn, as shown in fig. 3. The results for three values
of Kn fall roughly together within the rather large experimental uncertainty,
but the results for the lowest pressure (Kn = 0.453) are distinctly out of line
with the others. We cannot say definitely whether this is caused by the greater
experimental error in the lowest-pressure measurements, whether it indicates
that more than one kind of surface-produced polarization is important, or
whether it means a failure of the present kinetic-theory model.

As before, we can proceed beyond the scaling rule alone if we assume that
the surface accommodation coefficient occurring in T(x) is unity. Then the
mathematical form of T(x) is determined®™*') (see appendix), and the final
adjustable parameter y(;,q can be found by requiring that the maximum in T(x)
occurs at the correct field strength in fig. 3. The values of T,,,, and y(:,q are given
in table II, and the calculated reduced curve is shown in fig. 3. The agreement
with the measurements is about as good as could be expected in view of the
fact that the measurements at the lowest pressure do not seem to follow the

30 T T T T
v 0078 4
41l
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tr,
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1+ bpgKn mT/Pa
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Fig. 3. Test of the predicted scaling rule for surface-produced polarization for the field dependence
of the transverse viscomagnetic effect for N, at 295 K, at Kn = 0.453, 0.183, 0.117 and 0.078, using
the measurements of Breunese. The results for Kn = 0.453 do not follow the scaling rule predicted
by eqgs. (56) and (57). The curve is drawn on the assumption that the surface accommodation
coefficient is unity.
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scaling rule. It is interesting that the curve of T(x) nevertheless predicts the
sign reversal shown by the lowest-pressure measurements. Further progress
probably requires measurements of the dependence of Ap"/Ap on the orien-
tation of the field, in order to determine the specific type or types of surface
polarization involved.

The mixed success and failure of the results in fig. 3 can be shown more
dramatically by using the curve of T(x) in fig. 3 to back-calculate Ap"/Ap vs.
B/p for direct comparison with experiment. The results are shown in fig. 4. The
agreement is quite good except for the single case of Kn = 0.453. The cause is
unclear, as mentioned above.

4. Discussion

The status of the present kinetic-theory model can be briefly summarized as
follows. By treating the solid surface formally as one component of a gas
mixture, and assuming additivity for the diffusive and viscous components of
the flux of any gas species, we obtain relatively simple explicit formulas for the
dependence of the field effects on Knudsen number over the entire range from
the continuum regime to the pure Knudsen regime. For gas mixtures the
composition dependence is also given over the whole range. Although the full
machinery of kinetic theory is apparently used, in fact only the part concerned
with classifying and counting collisions contributes to the final result. In other
words, kinetic theory is used only as an interpolation scheme for pressure and
composition dependence.

1.6 — T — T ——r
- N ke 4
1.2 2 N
08 n
\,
0.4 AN .
" v \\
Ap * S~ ]
-|o3A—p IO 00 000 0TI
B Kn=0453 |
-04 sl gl e
ol | 10 100
_Bﬁ_) mT/Pa

Fig. 4. Transverse viscomagnetic effect for N, at 295K as a function of B/p at various pressures.
The symbols are the measurements of Breunese, and correspond to those in fig. 3. The curves are
calculated from eq. (56) using the curve of fig. 3 to represent surface-produced polarization, with
parameters listed in table I1. The symbols correspond to the following Knudsen numbers: @ 0.0134,
O 0.0260, A 0.041, A 0.056, ¥ 0.078, V 0.117, ¢ 0.183, & 0.453.
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The results give the correct limits in the continuum and Knudsen regimes. In
particular, the relative field effects depend on field strength and pressure as the
single variable B/p in the continuum regime, and in the Knudsen regime are
independent of p and depend on B alone. The results also agree with more
elaborate kinetic theories where these exist; e.g. in the “signatures” for the
decay and production of molecular polarization due to surface collisions'™"").

Comparison with experiment has so far been limited to viscomagnetic effects
in CO and in N,. We have made only the simplest possible assumptions
concerning the surface-produced polarization. In particular, we have assumed
that only one type of surface-produced polarization is important, and that it
appears only through the Knudsen diffusion coefficient and not through the
viscosity as well. The model is consistent with most of the experimental
measurements, but further work involving the tensorial nature of the surface-
produced polarization is needed for fuller testing of the model. Additional tests
are also possible through available measurements of field effects on gas
mixtures, but we believe that the present work is sufficient to establish that the
model is worth taking seriously.
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Appendix

The functions L(x) and T(x) are related to a complex function G(x, n)
introducted by Knaap and Kusger"'),

200"

G(x,n)Edet. (A1)
0

When the surface accommodation coefficient is unity, = 0 and

L(x)=1-Re G(x,0), (A.2)
T(x)=-Im G(x,0). (A.3)
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The function G(x, ) is related to the functions f,(x) discussed in the hand-
book of Abramowitz and Stegun®), and in particular

G(x, 0) = 2f,(ix) . (A4)

Owing to the lack of numerical tables, it is necessary for the present purposes
to compute L(x) and T(x) from convergent and asymptotic series that can be
obtained from the formulas given in Abramowitz and Stegun®).

The convergent series can be written as follows:

L(x)=-A(x)Inx + B, (x), (A.5)

T(x) = —(7/2)A(x) + B y(x), (A.6)
where

A(x) = |ayx® + |agx* + |agx®+ -+, (A7)

Beyeo(x) = [bylx™ + [bylx* + bglx®+ - - -, (A.8)

B go(x) = |by|x + |by x>+ [bg|x* + - - -, (A9)
and

%k :216;‘((1:— 2y @7 (10

_ —2b,_,— (3k*~ 6k +2)a,
k(k-1)k-2)

b, (A.11)

b,=—-7", b,=@/2(1-y), y=0.5772...(Euler’s constant). (A.12)

Terms through at least x'* must be retained in order to achieve an accuracy of
better than 1% up to x = 5.

The convergence of these series rapidly becomes poor for x > 5, requiring
many terms to be carried for accuracy, but the following asymptotic series,
obtained from the formulas given in Abamowitz and Stegun, can then be used:

12 1/3 2/3

tw~1-2(3) (3) exp[-%(g) }[Ccos(()——%)—Dsin(O—%)],

(A.13)
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o 12 X 1/3 3 /x 2/3 ) P T
rw~2(5) () ew[-3G) [[csnlo-F)+peos(o-F)].
(A.14)
where
3 x\
g =37 _) , A.15
2<2 (A1
52\ 35 2\
C=1+2(5) +5(5) v (A.16)
72 \x 432 \x
5 2 2/3 35 2 4/3
—qw2l 2 (2 _ (% .. A.17
p-35() ~@mb) ] (A1)

These series give results to an accuracy of about 1% at x =35, and better
accuracy for x > 5. Because of their asymptotic nature, it does no good to take
more terms than those shown; higher terms improve the accuracy only at large
x, where it is not needed.

The foregoing expressions permit the easy calculation of L(x) and T(x) to
about 1% accuracy or better. Greater accuracy can be obtained straight-
forwardly, but at the expense of substantially greater computational effort.
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