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A simple model is presented that describes the complex behavior of the magnetic field
dependence of the thermal conductivity of a polyatomic gas as a function of the Knudsen
number. The model treats the solid surface as one component of a gas mixture, and a first-
order Chapman-Enskog solution is adequate to account for the thermomagnetic effects in
single gases. The results provide an interpolation scheme between the continuum and Knudsen
regimes, in the form of scaling rules in which the Knudsen number appears in the coefficients
and arguments of the functions that describe the limiting cases. Good agreement is obtained
with the available experimental data, and leads to the conclusion that different surface
accommodation coefficients are needed for the translational and internal energies of the gas
molecules. This conclusion is consistent with analysis of independent field-free conductivity
data, and with independent vibrating-surface measurements.

I. INTRODUCTION

The purpose of this paper is to show how the complex
behavior of the magnetic field dependence of the thermal
conductivity of a polyatomic gas in the transition region can
be described by a simple model. This model describes the
behavior over the range from the completely hydrodynamic
regime to the completely collisionless free-molecule regime,
and in principle allows the effects of molecule~molecule and
molecule—surface collisions to be disentangled.

In a gas, the transport of mass, momentum, or energy
along a gradient tends to produce a partial alignment of the
angular momenta of the molecules responsible for the trans-
port. This alignment can be destroyed by the imposition of
an external magnetic (or electric) field, with the result that
the transport coefficients show field dependences. These de-
pendences, as well as the various field-induced cross effects
that accompany them, are usually called Senftleben—Been-
akker effects. Although small in magnitude (less than a per-
cent or so), these effects can be measured with considerable
precision, and have the important property of depending en-
tirely on just the nonspherical part of the molecular force
field. Many results are available.'™®

Partial alignment of momentum in a gradient can be
produced both by collisions with other molecules and by
collisions with solid surfaces. The former dominates in the
continuum or hydrodynamic regime in which the Knud-
sen number is small, and the latter dominates in the free
molecule or Knudsen regime in which the Knudsen number
is large. In principle it is possible to study molecule~mole-
cule collisions and molecule—surface collisions separately by
working in either the completely hydrodynamic or the com-
pletely free-molecule regime, but in practice most measure-
ments fall at least partly in the transition region where
neither molecule-molecule nor molecule—surface collisions
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are completely dominant. Because the dependence of the ef-
fects on field strength and on gas pressure are quite different
in the two extreme regimes, the dependence in the transition
region is typically quite complex.

The model covers the transition region by treating the
solid surface as one component of a gas mixture. The depen-
dence of a transport coefficient on the Knudsen number then
comes from the dependence of the coefficient on the “mole
fraction” of the solid component. The results take the form
of scaling rules in which the Knudsen number appears in the
arguments and coefficients of the functions that describe the
field dependence of the effects in the hydrodynamic regime.’
No expansion as power series in Kn or Kn™' is involved,
where Kn is the Knudsen number, although such expan-
sions are easily developed if wanted. This is in contrast with
more conventional approaches, which involve either correc-
tions to the hydrodynamic results in powers of Kn,'*'? or
corrections to the free-molecule results'? in terms of powers
of Kn™LM

In the cases so far treated in detail by this model—name-
ly the viscomagnetic effects for single gases in a previous
paper® and the effects on the thermal conductivity of single
gases in the present paper—it has not been necessary to pro-
ceed beyond the Navier-Stokes level of hydrodynamic de-
scription and the first-order Chapman—Enskog type of solu-
tion of the Wang Chang—Uhlenbeck and Waldmann-Snider
kinetic equations. In these cases the model gives in effect a
first-order scheme for interpolation through the transition
region. The influence of geometry, such as the shape of the
container and the orientation of the field with respect to it,
are put into the problem in standard ways before the model
itself is invoked. Details of molecule—surface collisions need
not be known, being absorbed into a small number of adjus-
table parameters, just as details of molecule-molecule colli-
sions are absorbed into cross sections in the theory of the
hydrodynamic regime.
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ll. KINETIC-THEORY MODEL

The aim of the model is to describe how the heat conduc-
tion in a stationary gas depends on the Knudsen number,
both in the absence and presence of an external magnetic
field. We begin with the field-free case to establish the de-
scription of the surface as one component of a gas mixture,
and then proceed to a corresponding description of the field
effects.

A. Field-free conduction

The transport equation in the absence of a field is very
simple (Fourier’s law),

q= —AVT, (1

where q is the heat flux, V7T is the temperature gradient, and
the thermal conductivity A is a scalar. The kinetic-theory
treatment of A for a molecular gas is rather complicated,
however, because the molecules transport energy both as
translational energy and as internal (rotational) energy, and
there is coupling between the two kinds of energy owing to
inelastic molecular collisions. We must consider mixtures in
the hydrodynamic regime, by which the effects of surface
collisions are introduced.

1. Hydrodynamic regime

For the treatment of the transition regime we need the
expression for A of a mixture in the hydrodynamic regime.
The essential feature needed in this expression is the depen-
dence of A on the mixture composition, which is later trans-
lated into the dependence on Knudsen number. The fact that
only the composition dependence is needed allows a useful
simplification of the general mixture formulas. The general
expression for A of a mixture is complicated because it con-
tains many new cross sections that describe inelastic colli-
sions between unlike species. Fortunately, it has been found
that these cross sections do not have much effect on the form
of the dependence of A on composition, but mainly change
the overall magnitude of 4 without changing the shape of the
A vs composition curve appreciably.'® Thus a good approxi-
mation can be obtained by using the simple mixture formu-
las without inelastic collisions as interpolation formulas for
the composition dependence, as long as the end points for the
pure components are given correctly, either by an accurate
theoretical formula'>~'" or by experiment. The same argu-
ment also justifies our using only the first approximation
formulas for A, and ignoring small correction terms involv-
ing the polarization of molecular angular momentum. '®'°

For a mixture we can describe the total heat flux as a
sum of contributions from each of the species / in the mix-
ture,

q = —A, VT, (2)

where the partial thermal conductivity due to species i never-
theless depends on all the species in the mixture because of
collisions. The translational contribution to A, for a mixture
of v + 1 species (considering the surface as one species) is'*

v+ 1 I A ’ji

Aiw = X; X; s
' ,-; 7 1A

(3)

in which the x’s are mole fractions, |A| is a determinant with
elements A, and |A|,; is the cofactor of the element A,; of
the determinant. The elements are
x12 + 4 v+ 1 x‘xj

(Aii)tr 25k j#Ei (m,- +mj)2nD,.j

X [¥mi+3G — §BHm! +4mmAY], (4a)

Ay i)

A

i

4 mm; XX
25k (m, +m;)?> nD; [

3 —3Br—44%],

(4b)

where (4,),, is the translational thermal conductivity of
pure species #, n is the total number density, D is the diffu-
sion coefficient of species / and j in the mixture, and 4 } and
B # are dimensionless ratios of effective cross sections whose
numerical values are usually near unity.?® The internal con-
tribution to 4, is'®

vl x; Di{“ —1
, (3)

Aiine = (A it [1 + J;l x_, Dii;n
where (4,);,, is the internal thermal conductivity of pure
species /, and D }}* is the coefficient of diffusion for the inter-
nal energy associated with species i/ through molecules of

species;. Notice that D " is not necessarily equal to D Ji*. It is

J
usually the case that D is not much different from the
diffusion coefficient D;;, unless there is some mechanism
whereby internal energy is easily transferred in glancing
collisions. >

The foregoing results enable us to describe heat conduc-
tion in the transition regime by considering the surface as

one species in the mixture.

2. Transition regime

We now let species v + 1 represent the surface (denoted
by a subscript s), and impose the following conditions:

(1) The surface makes no direct contribution to the
thermal conductivity: A, = 0.

(2) The surface “molecules” are much heavier than the
real molecules: m > m;,.

(3) The quantities » and x; appearing in the formulas
are not the actual gas number density and mole fractions, but
include the surface species in the counting. Using primes
when the surface species are included and dropping the
primes when only actual gas molecules are included, we
write

x, =x;(n/n"). (6)

(4) Whatever counting is used, the binary collision as-
sumption requires that®"*?

n'D} =nD; (7)

and similarly for D .

Inserting these conditions into Egs. (3)—(5) for A, we
find that A, = O because m,/m_; = 0. This allows A, to be
factored out of the determinants in Eq. (3), whereby it can-
cels between numerator and denominator. Similarly, the fac-
tors of n/n’ that appear when x/ is converted to x; cancel
between numerators and denominators in Eqs. (3) and (5).

n=n+ng,
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The net result of the above conditions on the surface species
isthat Eq. (3) for A;,, has the same formal appearance as the
continuum formula in which the surface species is neglected;
the only effect of the surface species is to contribute one extra
term to the summation in each of the A;,. Similarly, the only
effect of the surface species on 4, is to contribute one extra
term to the summation in Eq. (5).

The case of particular interest here is a single gas plus
the surface species. For the translational contribution we
obtain

A =iy = x?/Aii s (8a)
with
2
A, = i + __?_(i _ iB:)ﬁ.‘_ (8b)
(Ai)e Sk\2 5 nD,

and for the internal contribution we obtain

x, D!

/1im = /Iiint = (iii Jint [l + ;é "b?] .
These expressions all contain the number density of surface
species n, and, through D, cross sections for gas—surface
collisions, o;. The precise physical interpretation given to
these quantities is unimportant, because they always occur
in the combination n,0,; and are absorbed into phenomeno-
logical coefficients that are determined separately. For con-
creteness, however, one can think of the surface as covered
by these surface molecules.

In particular, the above expressions can be written in
terms of a Knudsen diffusion coefficient D, for species i,
defined as®!

DiKE(n/ns)Dis' (10)

D)

The Knudsen diffusion coefficients must ultimately be
found experimentally, but free-molecule calculations for
various geometric arrangements show that D, is always of
the form??

D, «?d, (11)

where 7 is the mean molecular speed and d is a geometric
quantity such as a tube diameter or plate spacing. We can
further extract a mean free path / from (4,),,, for which
elementary kinetic theory gives the form,**

(A)y < knvl . (12)
The Knudsen number / /d will therefore appear in this model
through the dimensionless group

(A;)/knDy <Kn. (13)

The behavior of the translational thermal conductivity

in the transition regime can thus be written as
2(5 6 Aide 17!
/1,=(,1,.,.),[1+—(———-B;;)——L 14
' ‘ 5\2 5 knD,, (s
or
ﬂ’ 1]
A, = SRS S—
1+a,Kn

whereA o, = (4,),, is the translational thermal conductivity

(15a)

of the gas in the continuum regime (Kn = 0), and

o

a,Kn=3(3 — gB;';)kn; )
iK

Similarly, the behavior of the internal conductivity in the
transition regime can be written as

(15b)

int ] —1
/{‘int = (/{'ii)int [l + D:?;:I ’ (16)
or
A
int = ’ (173)
1+a,.Kn

where 4 2, = (4,;);., is the internal thermal conductivity of
the gas in the continuum regime (Kn = 0), and

a, Kn=D¥/D* . (17b)
The total thermal conductivity in the transition regime is
therefore

A? o

A’ — tr + int , ( 1 8 )
l4+a,Kn 1+44,Kn
or if a,. and a,,, are not too different,

(V]
At
1 +aKn

where A° =A% 4+ 12  andaissomeaverageofa, anda,,-

The above expressions for the behavior of A in the transi-
tion region are not new, although this is the first time they
have been derived from this particular model. A simple tem-
perature-jump calculation gives Eq. (19) with?

(V]
a=2——a 4 mi ’ (20)
a y+1 75, :
where a is the accommodation coefficient for energy,
¥y =¢,/Cyy €, =€y + Cine» €, is the translational heat ca-
pacity (per molecule), ¢, is the internal heat capacity, and
77 is the viscosity,

(19)

7 =1am(v/2"?)1, (21)

in which the factor of 2'/2 gives the conversion from mean
relative speed to mean speed. The dimensionless ratio
mA °/7c,, called the Eucken factor, ranges from 2.50 for
atoms to about 1.5 for polyatomic molecules.>® More elabo-
rate kinetic-theory calculations by a variety of methods give
Eqgs. (18) and (19) as first approximations, and in higher
approximations usually give expressions involving ratios of
polynomials in Kn.?-3! All calculations of course reduce to
A« Kn~!in the free-molecule limit. A surprising result of
these calculations is that the very simple Eq. (19), with the
single parameter a treated as adjustable, gives a remarkably
accurate representation of the results, as will be demonstrat-
ed below. This gives us some assurance that the simplifica-
tions we have made in obtaining Eq. (18) will not have seri-
ous consequences.

It must be emphasized that the present model does not
give a method to calculate a,, and a,,,, from first principles.
Such calculations must be based on a more detailed theory
that describes the molecule—surface interactions. In particu-
lar, the model does not treat any details of surface accommo-
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dation. The ad hoc introduction of accommodation coeffi-
cients modifies the results to*®

a, =——"4°, (22a)
atl’
2—a
Ay = - ?m ’ (22b)
aint

where a,, and a;, are the accommodation coefficients for
translational and internal energy, respectively, and the su-
perscripts 0 on the a’s denote their values for @ = 1. Never-
theless, it is reasonable to expect that the model can yield a
fairly reliable value for the ratio of a2, toa?.. To put this ratio
in simple form, we use the relations,

A =3nc./m, (23a)
nmD;/p=84%, (23b)

where D, is the self-diffusion coefficient of species 7, and 4 %
is a dimensionless ratio of two effective cross sections for
molecule-molecule collisions.?° We then find that

0 -1/ Di™\/D.
amtziA:%(_S- _ iB:) (_L)( I.K), (243.)
a?, 5 2- 5 Dy Dk

in which all of the dimensionless ratios are about unity. Since
the ratios 4 * and B * are usually somewhat greater than uni-
ty,2° we take the plausible values of 4 * ~9/8 and B * ~5/4

to make the formula simple; we also take the ratios of the D ’s
as unity, and find

ay,/a) ~0.90 .

int

(24b)

This is a reasonable value to use when fitting experimental
data; the fit will not be sensitive to this value, since deviations
can automatically be compensated by a change in «;,,, .

We can further obtain useful estimates of a°. and a,
separately, by adopting the temperature-jump formula of
Eq. (20) for just the translational contribution to the param-
eter a. That is, we carry out a temperature-jump calculation
for just the translational contribution to A. Then we have
y=5/3,mA% /qc, =5/2, and

ad =~15/4. (25a)
Combining this result with Eq. (24b), we find
ad, =3.4 (25b)

These are reasonable values to use in fitting experimental
data, since any deviations will be absorbed in &, and «
Another relation useful in fitting data is

o nmD j‘?tcin Cin D:‘t

m t=1_2A5(.,)( ) (26)
/1 tr % vctr 25 Cir Dii

Using the same plausible numerical values for 4 % and the

ratio of the D ’s as above, we find
Al 27 Cine
A 750 ¢,

which is equal to 0.36 for a diatomic gas.
We can compare the foregoing formulas with the experi-

mental measurements of Teagan and Springer?® on the heat

conduction of nitrogen between parallel plates in the transi-
tion regime. The measurements are reported as the ratio

int*

(27)

0 I | |
0 gpt 10 20 30 40
—_—

FIG. 1. Field-free thermal conductivity of N, in the transition region (mea-
surements of Teagan and Springer). The dashed line is the fit according to
Eq. (19) with @ = 5.17, and the solid curve is the fit according to Eq. (18)
witha, = 5.0 and g;,,/a,, = 20.

A /A4 @, where A * is the free-molecule effective conductivity
(Kn = o). We can rearrange Eq. (19) into the form
A7 14 L
A aKn’

from which we are led to expect that a plot of A */A vs Kn™
should be nearly a straight line. Such a plot is shown in Fig.
1. Teagan and Springer fitted their measurements with this
equation (among others), taking mA °/nc, = 1.90 and
a = 0.76 or a = 5.17. Although the measurements are rath-
er well represented by this straight line, which is shown
dashed in Fig. 1, they show small systematic deviations from
it. The measurements can be fitted somewhat more accurate-
ly by Eq. (18) with a,, = 5.0 and a,,,/a,, = 20, assuming
A2, /4% = 0.36 as above; this equation is shown as the solid
curve in Fig. 1. It is of course not surprising that Eq. (18)
with two parameters gives a better fit than Eq. (19) with
only one parameter. Nevertheless, the values obtained for
the two parameters of Eq. (18) are physically reasonable.
The corresponding accommodation coefficients are
a, = 0.86, and a;,, = 0.065 if a), /al, is taken as 0.90. The
value of @,, near unity is not surprising.>> The striking result
is the small value of the ratio «;, /a,, = 0.076, indicating
that internal energy is much less easily transferred to the
surface by collisions than is translational energy; this was
not suggested by older measurements of thermal conductiv-
ity.?® However, recent measurements by a vibrating-surface
technique with N, on several metal surfaces put this ratio at
about 0.1, and the value of «,, in the range 0.03-0.11,*?
which is remarkably good agreement. However, our actual
numerical values should not be taken too literally, because
a,. can be varied by about 20% and a,,,, by about 50% with-
out significantly spoiling the fit of the measurements. Even
s0, @,, cannot be reduced as low as 15/4, implying that «,,
must be less than unity.

The foregoing details on curve fitting are relatively un-
important—the essential point is that the present model
gives a satisfactory account of field-free heat condition in the
transition regime with at most two adjustable parameters of
reasonable magnitude.

(28)

1
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B. Field effects

Application of an external magnetic field converts the
thermal conductivity and diffusion coefficients from scalars
to tensors of rank two with three independent components,

At —A" 0 Dt —D" 0
A=|ar At 0], D=|D~ D! 01,
0 0 Al 0 0 D!
(29)

where, for example, A * is the thermal conductivity when the
field is perpendicular to VT. The coefficients A and D ¥
only enter into the description of the flux induced transverse
to the temperature gradient by the magnetic field, and are
not considered further in this paper; except for Eq. (29), the
notation “tr” indicates molecular translational motion. The
heat flux thus changes slightly by 8¢ when the field is
switched on. To first order, 8¢ can be found by taking the
variation of the transport Eq. (1) with A given by Eqs. (18)
or (19), holding VT constant. Using Eq. (19) for A we ob-
tain the result

V]
q A 1+aKn\ A° Dy

(30)

The last term arises because a is proportional to A °/Dy . The
same result is obtained if ¢ is held constant and the change in
VT is measured. If we treat the translational and internal
contributions separately and use Eq. (18) for A, we obtain a
similar but more complicated result,

A /) (640 8D
sg_ oA _ /D) (_w +at,Kn_K)
q A 1+a,Kn\ A2 D,
(G /) ™ - Kn 5DAi;<n)’
1 +a,Kn\ 19, Dy
31)

which reduces to Eq. (30) if a,, = a;,,. These results have
the same form whether the field is applied perpendicular or
parallel tothe temperature gradient. In particular, 54 © refers
to either A * or A !, and 6Dy to either Dk or D k.

Equations (30) and (31) show only how the presence of
the surface manifests itself through its influence on the field-
free thermal conductivity. In other words, these are the
Knudsen effects that will appear regardless of the details of
the magnetic-field phenomena. This can be made obvious by
setting the a’s equal to zero, which makes all the explicit
Knudsen effects vanish. Since the a’s have nothing to do with
the magnetic field, it is evident that the Knudsen effects in
Egs. (30) and (31) also do not. To include the Knudsen
effects on the magnetic-field phenomena, we must again in-
voke the model to obtain expressions for the dependence of
S8A°%/A°and 8Dy /Dy on Kn.

1. General formulas

The general expressions for 54 °/4 °, whether transla-
tional or internal, are of the form’

0\l 1_j0
(‘S;o) -2 /10/1 = —¥,[f(E12) +2/(26,,)]
+ ¥, 60 » (32)
oNl gl _ 40
(6/1/10) = /104 = —2¢12f(§12)+2¢|1f(§11) s
(33)

where the field-dependent function is
fE=E/(0+EY). (34)

These expressions contain two types of polarization, denoted
as 12 and 11, which seem to be the minimum required to
account for the continuum results on N, and CO (although
¥,,€¥,,).” The field parameters i and £ for a binary mix-
ture (in this case, gas / and surface s) are®>***

x,0,0,(12 prod)?

= , 35
Viz 20, (1)S|,(decay) (39
(const) (B /p)x;
= 36
S S, (decay) (30)

with similar expressions for ¢,, and &,,. Here B is the mag-
netic field strength, p is the gas pressure, S),(decay) is a
decay factor given by

S, (decay) = x,7,0, (12 decay) + x,0,0, (12 decay) ,

(37)
in which U, and U, are average relative speeds given by
vy = (8KT /muy)''?, (38)

; being the reduced mass. In ¢,, the cross section o; (12
prod) represents the production of the 12 polarization by i
(molecule-molecule) collisions, and ; (1) is the cross sec-
tion related to the field-free thermal conductivity. In S,,(de-
cay) the cross sections g;; (12 decay) and o, (12 decay) rep-
resent the decay of the 12 polarization by molecule-
molecule and molecule-surface collisions, respectively.

It is convenient to again eliminate the product n,0,, and
parameterize ¥ and £ in terms of the Knudsen number by
defining a dimensionless parameter b,, as

n kT o, (12 decay)
2'%p o, (12 decay)

The Knudsen number is to be calculated as Kn=//d, with/
obtained from the viscosity according to Eq. (21). The de-
pendence of ¢ and £ on Kn can then be written explicitly as

b, Kn= (39)

0
Yp=—"7—o0f), (40)
271+ b,Kn
0
12
52 (41)
Sz 1+ b,Kn

where, as usual, the superscript 0 denotes the limiting con-
tinuum result at Kn = 0. Explicit expressions for ¢, and

9, can be obtained by setting x; = 1, x, = 0in Egs. (35)-
(37). Similar expressions hold for #;, and &,,.

The foregoing expressions are those in which the trans-
lational and internal contributions to the thermal conductiv-
ity have been combined.* If the more complicated formulas
are used, in which the translational and internal contribu-
tions are kept separate, it is obvious by inspection of the
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formulas that the production cross sections are different for
the translational and internal contributions, but that the de-
cay cross sections are unchanged. The result is that £ is un-
changed, but ¢}, in Eq. (40) is replaced by ¢'; or ¢, so
that Eqs. (32) and (33) take the forms

0 tr
6/1 tr 12

, (42a)
A% 1+b,Kn
o int
5/{ int 12 , (42b)
AD. 1+ b,,Kn

with similar expressions involving ¥¥, and ™.

It remains to consider the effect of the magnetic field on
the parameters ¢, '™, and b. The cross section most likely
to be affected by a magnetic field is o, (12 decay), which is
the only one involving molecule—surface collisions. The mo-
lecular precession induced by the magnetic field seems likely
to affect the nature of the surface collisions,'? but not the gas
collisions (on the average). Hence ' and ¢™™ would not
depend on the field orientation, but b could take on different
values, such as 5* and b !. Experimental results in the near-
continuum regime support this view.®

We turn next to the terms 8D /Dy and 6D 2'/D %" i
Eq. (31). Since their expressions are of the same form, we
consider them together. For simplicity, we assume that only
one type of polarization contributes to 6D, /Dy; this as-
sumption is easily removed. It is the polarization produced
by the surface collisions that appears in D, /Dy , which has
the form,

6DK/DK = _Illpquq(gpq ’a) > (43)
where possible forms of the field-dependent function
I, (£,,,20) have been discussed and classified. > This func-
tion depends parametrically on the accommodation coeffi-

cients . Whatever this function may be, the field parameters
¥,, and £, for a binary mixture will have the forms®

(const)x, D, 0, (pg prod)?

2241

S, (decay) = x,0,0, (pq decay) + x,,,0; (pq decay) ,

(46)
in which o, (pg prod) is the cross section that describes the
production of pq polarization due to molecule-surface colli-
sions, o, (D) is the cross section related to the field-free
Knudsen diffusion coefficient Dy, and o, (pq decay) and
0, (pq decay) are the cross sections that describe the decay
of the surface-produced pg polarization by molecule-mol-
ecule and molecule-surface collisions, respectively. We
again eliminate #,0;, and parametrize these results in terms
of Kn by defining a dimensionless parameter b,, as

lH

n kT o, (pgdecay)

b, Kn=—7 (47
2'%p 0, (pq decay) ’
which yields
b, ¥=Kn
=_LaTr 48
Yo 1+b6,,Kn (48)
o
=—r 49
S =1 +b,,Kn @

where ¢, is the constant limiting value of ¢,,, in the Knud-
sen regime (Kn— o ), obtained by setting x; =0, x, = 1 in
Egs. (44) and (46), and £ ,, is the limiting form of £,,, in the
continuum regime (Kn = 0), obtained by setting x; = 1,
x, = 0in Egs. (45) and (46).

The orientation of the magnetic field is presumed, as
before, to possibly affect only the molecule-surface cross
section o;.

The result for 6D, /D, thus has the form

8Dy
Dy

by ¥oe Kn
= T Ttb, Kn e
pq

(50)

Other forms are obtained by simply adding subscripts *“tr”
and “int” to 55 and @, or superscripts 1 and || where needed.

Yoy = o (D)S.. (decay) (44 Additional types of surface-produced polarization merely
" P produce further terms of the same general form.
£, — (const) (B /p)x; (45) Combining the foregoing results and substituting them
i S,, (decay) into Eq. (31), we obtain the final formulas,
}
(Sql (/l"//l) [ tr tr
%9 _ )+ 221, — ———f(
g 1+a,Kn|ll+b5Kn Wi + 200265 1+ b4, f§
atrb;l)q(w;;)tr(Kn)z 1 (gl a )
14+ 5% Kn paiE P
(A’int/ﬂ') [ mt
(€1) + 22610 — ————f(€1)
e T Ve i) + 2/ 10} — e
ain bl ( o )int (Kn)z
t plq+¢qu — L;q (é’ll,q,aim) , (51)
pq
5q" (A /A) 24, 29, a.bl (Yl (Kn)2
e [ o ety — —P_pyy + el Tl KDy e
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where
0

= 28 53)
£ 1+ b551Kn (
If the translational and internal energies do not need to be
treated separately, these formulas reduce to
0

bq* i
T(1+0Kn)= [r& 2)+2f(2§12)]

1+ b4 Kn
0

1+b11K &

+ab,l,q(¢,§f,) (Kn)?
1+b6;,Kn

L, (§..2),
(54)

with an analogous expression for 8g'/g.

Although the above formulas seem to contain a very
large number of parameters, many of them can be found
from independent measurements made in the near-contin-
uum and continuum regimes. Very few remain to be adjusted
to fit the transition regime itself. To exhibit this behavior, we
consider several limiting cases before proceeding to a com-
parison with experimental data.

2. Limiting cases
We first check that Egs. (51)-(53) reduce to the known
continuum and Knudsen limits. When Kn = 0, we obtain

8¢ /v [ FED) + 22600 — L AES) , (55)

6q"/q—»2¢‘1’7_f(§,2 - ¢11 (511 » (56)
where
(1] =_tor tr + ?nt 'nt= 0'"(12 pI'Od)z
BTe TR T 0 T T s (A) o, (12 decay) |
(57)
o  (const)m;”*(B/p)
12 = ’ (58)

o; (12 decay)

with analogous expressions for ¥, and £ 9, . Measurements
at different values of B and p scale together as a function of
the single variable B /p. These expressions agree with the
known continuum results,” as given by Eqs. (32)-(36).

In the Knudsen limit, there seems to be no prospect with
present data for distinguishing between ¢,, and a,,, in the
functions L, (£,,,@), so we will ignore this distinction.
Then we obtain for Kn— oo,

(Sql”/q—’(¢Pq)l"Ll“(§pq!a) s (59)
where

¥5) ya =2 "(:ﬁ,,q l + = ()i

_ (const)c*"(prod)2 ’ (60)
o, (D)o (pg decay)
(const)m;”*B
R L (61)
(pq decay)

Notice that the results are now independent of pressure and

depend only on B, in agreement with the known Knudsen
results.'>3

These results show that measurements in the continuum
limit can be used to determine the parameters 2, and ¥?,,
and also the parameters contained in £ {, and £ 9, . Similarly,
measurements in the Knudsen limit can be used to determine
¥, and the parameters contained in § ;. The individual
translational and internal components of the #’s cannot be
found from measurements in these limiting regions, but only
their linear combinations, as in Eq. (57). Information on
these components and on the & ’s can be obtained from analy-
sis of measurements in the near-continuum and near-Knud-
sen regions, to which we now turn.

For algebraic simplicity, we deal explicitly only with the
saturation limit of high field strength. Most of the measure-
ments in the transition region that are available for testing
the present model are saturation results. At saturation,
f€)=1 and L, (§,,,a) =L, (x) =const. Expanding
Eq. (51) in powers of Kn and keeping only the linear terms,
we obtain

(%)m = G4 = R0 — [ = KD O +a,)
+¢?.(b{2—bh)]Kn
+ (@ — 8,.) ‘"'[(3'”’2—
— 20393 — ) | Kn + (62)

where ¢° is as defined by Eq. (57). From Eq. (52) we obtain
similarly

(57"") =204, —2[ (W — ) b +a,)
+ ¥, (b, —b1,)]Kn
+ 2(@5 — ay,) Am — [,
—2(¢5 — ,’;‘)]Kn+---. (63)

The first-order Knudsen deviations are often measured di-
rectly in order to correct the raw data to the continuum
limit, and give information primarily on b,, and ;.

To find the near-Knudsen behavior, we expand Egs.
(51) and (52) in powers of Kn~"' and keep only the linear
terms, thereby obtaining

()
q /sat

AZ A
=Ag{[1_(_l_+__"_ int )Kn—l+...],
b[lJ;]" a"/{ ® ainlﬁ' *
(64)
where
A=) LN (o) . (65)

More specifically, the directly-measured ratio is

5ql _A:at 1 1 -1
(a—qn)s Al [1‘(1,1 'bT)K“ AR R

sat
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which gives a direct measure of the difference between b ,,
and b, .

We turn now to the use of these results in the analysis of
experimental data in order to test the present model.

II. COMPARISON WITH EXPERIMENT
int

The parameters to be determined are a,,, a,,,, ¥\%, 15,
o U b1p, b, b1y, B, Al Al b, and bﬂq’ an
overwhelming total of 14 parameters needed to test the pres-
ent model in the transition regime. As remarked earlier,
however, many are readily found from independent mea-
surements. In particular, a,, and a,,, can be found in princi-
ple from field-free thermal conductivity measurements, ¢,
and #?, from the continuum limits, AL, and Al,, from the
Knudsen limits, and the difference between b ,, and b,'lq
from the near-Knudsen region. Further information is avail-
able from near-continuum measurements, but comes in
somewhat more complicated form, as follows.
In the near-continuum region it is customary to repre-
sent the first-order Knudsen corrections by scaling the mea-
surements according to the formulas*%®

A=A°(1+K,/p)" ", (67)
8q9/q9 = (8¢°/¢°) (1 + Ky, /p) ", (68)
B/p=(B/p)°(1 +K,/p), (69)

where the superscript O denotes the continuum limit
(Kn = 0 or p— ). No distinction is made between a,, and
a,, in Eq. (67), since a single average value of a usually
suffices to fit the field-free measurements, as was shown in
Sec. IT A 2. We can see that, except for a numerical factor
that relates p and Kn, the coefficient K; is proportional to
the coefficient @, K|, is proportional to a combination of b,,
and by,, and K, is proportional to a rather complicated
combination of coefficients according to Egs. (62) and (63).

At this point we can make some simplifications by rec-
ognizing that the only measurements suitable for testing the
present model are those for N, and CO on a gold surface at

TABLE I. Fixed and constrained parameters.

Parameter N, on Au COon Au
AR /AC® 0.36 0.36
a® 4.12 4.33
a 0.87 0.84
b, =bt ¢ 2.08 2.49
bl, =0l ¢ 1.71 1.83
1%, 9 3.82 3.50
N 0.06, 0.02,
(Bor)* 5.20 6.24
(Bor)!If 4.99 5.82
AL /ALE 2.33 2.18

*Equation (27); fixed value.

* K, of Ref. 8; fixed values.

°K, of Ref. 8; constrained values.

9Equation (57) and cross sections listed in Refs. 6 and 33; fixed values.

Continuum limit of measured (8¢4'/8g"),,, in Refs. 4 and 8; constrained
values.

fEquation (76) and X coefficients of Ref. 8; fixed values.

8 Knudsen limit of measured (5¢'/5q"),,, in Ref. 8; constrained values.

300 K by the Moscow group,® which cover essentially the
entire transition region. Extensive measurements by the Lei-
den group*”’ cover only the continuum and near-continuum
region; although they furnish some parameter values, they
do not test the model. Measurements involving O, in the
transition region® are very difficult to analyze because of the
extra angular momentum carried by the electron spin in the
triplet ground state.’” For N, and CO we can safely take
b4l = b1, on the grounds that the 11 polarization is much
less important than the 12 polarization and so the results are

insensitive to the value of b 1. This is shown by the fact that

(§_q_l_)° _ M-
8¢ w  2(4%, —¥5))
differs only slightly from 3/2 (1.57 for N, and 1.52 for

CO).*® With this simplification we can identify the K coeffi-
cients of Egs. (67)-(69) as

(70)

K, = (pKn)a, o
K= (pKn)byf, 72)
Kil= (pKn)[b1] + @, — (G —ay)

X (A0 /A0 (1~2¢"D], 73

where

pKn = (7kT /2m)"?*(9/d) , (74)
Bt P — P/ Gl —B) (72)
#= (s — I/ e — PRy (73b)

The factor pKn for N, and CO at 300 K is equal to 0.69 Pa
for the Leiden experiments®* and 3.2 Pa for the Moscow
experiments.®

Comparison of Egs. (72) and (73) immediately gives
an interesting result concerning a,. and a,,. If a,, =a,,,
then K5, must be larger than X, by an amount correspond-
ing to a,, . But the Moscow measurements give K, more than
twice as large as K5, for both N, and CO on Au, so that these
near-continuum measurements require that @, and g;,, be
different. This is in at least qualitative agreement with the

TABLE I1. Final parameter values.

Parameter N, on Au COon Au
a, 4.0 4.0
a, 0.97 0.97
a,,./a, 20 50
., 0.08, 0.03,
b, =by, 1.89 1.04
b, =bl, 1.70 0.91
10°47, 4.68 4.20
1% 1.42 1.54
104, 0.3, 0.03,*
1% 0.0 0.0,*
by, =bl, 4 10
10°A;,, 3 2°

*The value of ¢f, has been adjusted for a better fit so that (8¢'/8¢")2,,
= 1.50, instead of 1.52.

*The value of Al,, /Al,, has been adjusted to 2.20 instead of 2.18 for a better
fit.
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FIG. 2. (5q*/5¢") .., in the transition region for N, on Au (measurements of

Borman ef al.). The curve is calculated from Egs. (51) and (52) with the
parameters listed in Table II.

analysis of the field-free measurements of Teagan and
Springer discussed in Sec. IT A 2.

To fit the data in the transition region, we have found
that it is necessary to allow some variation in b,,. This is
permissible because K, and K, are not individually well
determined, but can be varied together and still fit the near-
continuum measurements. We have therefore used a combi-
nation of the K coefficients as a fixed quantity rather than the
individual coefficients as follows

(Bor)"'=(pKn) " '(K, + K ;' — K 3

=(a—y) + (@ — @, ) (A0 /A0) (1 = 24"y .
(76)

This combination does not involve the b,,. The various pa-
rameters that we have taken to be fixed or constrained are
listed in Table I, together with their sources. In addition, a
plot of the near-Knudsen data according to Eq. (66) shows
the absence of a term linear in Kn™, so that we can take
b;, = bl . Weareleft with only four parameters to be deter-
mined: a,,,a;,,,As,, or Al,, and b,,. Of these, a,, is highly
constrained by the field-free measurements: it must be

25 T T T T T T T T T
CO-Au
20 |
(éﬂf) -
8q// sat
1.6 ¥a) a6
cooond o coraod e il e
001 g, 01 1 10 100

—_

FIG. 3. Same as Fig. 2 for CO on Au.

25 | lIIIII
Nz—Au

P TTTI LIRLILLLLL L LLRALLL

2.0

1wl
0.01 Kn 01 1 10 100
—_

cavnl ool Lot

FIG. 4. (8¢'/8¢"), in the transition region for N, on Au with a,, = a,,,.
The curves are calculated from Eq. (54) with the parameters listed in Table
I: dashed curve, b,, = 2.5and AL, = 3.3X 1074 solid curve, b,, = w and
AL, =29x107%

sat

greater than 15/4 according to Egs. (22a) and (25a), and
according to the analysis in Sec. IT A 2 it is probably some-
what less than the value of a. The value of a,, should there-
fore be close to 4. Furthermore, the discussion in Sec. I1 A 2
indicates that the magnitude of g,,,, /a,, is about 20.

The actual fitting of the experimental values of
(6" /8q"),,, from Ref. 8 proceeded by first least-squaring
for the four main parameters plus the b,,, and then allowing
minor adjustments in some of the constrained parameters in
Table I to improve the final fit. The final parameter values
are listed in Table I1. The overall fit of the data is rather
insensitive to the values of g;, /a,, and b,,, which can be
varied by roughly a factor of two without substantially
changing the quality of the fit.

The results are shown in Figs. 2 and 3 as (8¢'/8q"),, vs
Kn. Although not perfect, the fit is within stated experimen-
tal uncertainties.® While this is not the most sensitive test of
the model, because it involves only ratios of saturation val-
ues rather than 8¢*!/q vs B /p at different values of Kn, it is
the best test available at present. It is therefore of interest to
demonstrate directly that these data do in fact require differ-
ent values of ¢, and a,,,. We took a,, = a;,, and used Eq.
(54) with the parameter values of Table I, chose a series of
values for b,, and least squared for the remaining param-
eter, AL, . The results for N, on Au are shown in Fig. 4.
Clearly, the fit in the transition region is unsatisfactory no
matter what value of b,, is chosen. The results for CO on Au
are even worse. It is of course possible to improve the fit by
varying b 1}, but the values needed are very different from
those in Table I and II.

IV. DISCUSSION

The present model appears to be successful in describing
the thermomagnetic effect through the transition region, in-
sofar as experimental data are available for testing it. It gives
the correct results in the continuum and Knudsen limits: in
the continuum regime the effects depend on the single vari-
able B /p, and in the Knudsen regime they are independent of
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p and depend on B alone. In the transition regime the Knud-
sen number invades the coefficients and arguments of the
functions that describe the two limits, thereby providing
scaling rules involving the single variable Kn. No expansions
in powers of Kn or Kn ™! are needed. A small number of new
parameters are introduced that must be found experimental-
ly or calculated from a more detailed microscopic theory.
The model does not furnish a recipe for the calculation of
parameters, it only furnishes an interpolation scheme
between the continuum and Knudsen limits.

An interesting physical result is that different accom-
modation coefficients are required for the translational and
internal energies of the gas molecules in order to fit the field-
effect data. This result is consistent with analysis of indepen-
dent field-free thermal conductivity data, and with indepen-
dent measurement using a vibrating-surface technique.
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