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Effects of magnetic and electric fields on transport phenomena in dilute polyatomic gases are
reviewed within the framework of first order Enskog theory. The established technique of
approximate operator inversion is used to give first order approximations of the transport
coefficients. Instead of the customary expansion of polarizations into orthogonal polynomials a more
general treatment is chosen here so as to accommodate recent experimental observations. The
polarizations produced by macroscopic fluxes are assumed to be eigenfunctions of the collision
operator within the subspace of functions anisotropic in angular momentum. The formalism is
extended to mixtures in a way to let the final expressions assume the same form as for pure gases.
The obtained transport coefficients obey several symmetry relations and inequalities. Additional
inequalities are now also derived for the matrix describing the saturated field effects.

1. Introduction

In 1930 Senftleben discovered that the thermal conductivity of oxygen changes
in a magnetic field"). The first analysis of this effect on the basis of a mean free
path theory was given by Gorter*?) in 1938 and worked out in more detail by
Zernike and Van Lier®) in 1939. In 1961 Kagan and Afanas’ev stated that, in a
polyatomic gas, the presence of gradients gives rise to anisotropies not only in the
velocity distribution, but also in the internal angular momentum distribution®).
Subsequently, Kagan and Maksimov showed that the latter anisotropies, or
polarizations, are the basic cause of field effects®).

* Present address: Gordon McKay Laboratory, Harvard University, Cambridge, Mass. 02138,
USA.
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After the demonstration by Beenakker in 19627) that field effects are a general
property of polyatomic gases and not only of paramagnetic molecules such as
oxygen, these effects have been studied quite intensively both experimentally and
theoretically. For a theoretical description the original form of the Boltzmann
equation is no longer applicable since this equation does not take into account
the internal degrees of freedom of the molecule. An adequate generalization was
derived independently by Waldmann®) and Snider®). Solution procedures anal-
ogous to those for the classical Boltzmann equation have been developed.
Waldmann and Hess presented a generalization of the moment method'®'"). A
generalization of the Chapman and Enskog procedure was given by McCourt and
Snider'2"?) and by Snider'*'%). A perturbation approach, formulated in terms of
inverse operators, was first introduced by Kagan and Maksimov'®), extended by
Tip, Levi and McCourt'), and further developed by Coope and Snider™).

The large amount of experimental information about field effects in dilute
polyatomic gases accumulated in the last two decades has greatly contributed to
the further development of the theory. It is the purpose of this paper to summarize
the theory for transport phenomena in dilute polyatomic gases in the presence of
external fields, taking into account the latest experimental results. One of the more
fundamental differences with earlier presentations of the theory is the treatment
of the dependence of polarizations upon the magnitude of the molecular velocity
and the magnitude of the angular momentum. Some further new aspects are a
modified formalism for gas mixtures and the derivation of an inequality for the
magnitudes of the field effects on heat conductivity, thermal diffusion and
diffusion.

For the sake of clarity, we shall first present in sections 2 through 4 the
derivation of phenomenological coefficients for a pure gas, while section 5
contains a generalization of the scheme to mixtures.

The description will be restricted to dilute gases of diamagnetic symmetric top
molecules. Moreover only rotational states are taken into account, since for most
gases considered here vibrationally excited states do not play a significant role at
room temperature.

2. The basic equations

The state of a molecular gas is described by a quantity f which is simultaneously
a classical one-particle distribution function depending upon position r, velocity
¢ and time ¢, and a statistical operator (density matrix) with respect to internal
degrees of freedom. We may regard f as a partially Wignerized one-particle
statistical operator'>'®2%). This operator f will simply be called the distribution
function.
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Under the usual conditions only rotation states of the molecules are excited.
Moreover, we may safely assume that f is diagonal in the angular momentum
quantum numbers. These numbers, J for linear molecules and J and K for
symmetric top molecules, correspond to the total angular momentum and to its
projection on the symmetry axis of the molecule, respectively. Physically the
assumption is justified if, as is usually the case, the spacing between energy levels
is large compared to k-times the collision frequency of the molecules. Under such
condition, during the time between collisions, matrix elements which are not
diagonal in J and K, are destroyed by phase randomization®').

Owing to its block-diagonality, f can be expressed as a function of the angular
momentum operator AJ,

f=flr,c,J,t). (1)

For a steady state and in the absence of external forces, the Waldmann-Snider
version of the Boltzmann equation reads

c-Vf+%[Hf,f]=C(f,f). @

The influence of the external field upon the internal state is taken into account
by the commutator with the field Hamiltonian H;. An analogous term involving
the rotational energy is missing, since H,, commutes with the block-diagonal f.
The collision term C(f,f) represents the rate of change of f due to binary
collisions. It is to be understood that this term is block-diagonalized in the sense
explained before.

For most gases at ordinary temperature quasiclassical approximations are
justified, so that f becomes an ordinary function also of angular momentum®®).
The Waldmann—-Snider equation (2) is then replaced by a Boltzmann equation of
classical appearance®®). While keeping this option in mind, we shall continue to
use the quantum language for the sake of greater generality.

The local Maxwellian is described by

L[ m \" H
0 o _ 2 ot
S=nz <27rkT> e"p{ Wk } ’ )

with the reduced peculiar velocity

5’,:'—T(c—v), @)

and with the rotational partition function obtained as a trace with respect to
internal quantum numbers

H
Z.=Tr exp{— ﬁ} ®)
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The symbols n, v and T denote the local values of particle density, mean flow
velocity and temperature, respectively, m the molecular mass and k the Boltzmann
constant. The dependence of f° on the angular momentum J is contained in the
Hamiltonian. For symmetric top molecules one has

h? 1
Hoy=—|+(=-1)/}
rot 21l [J + (I” >J|i| > (6)

where Jj is the component of J along the symmetry axis of the molecule for linear
molecules J; = 0) and /; and I, are the moments of inertia of the molecules with
respect to an axis parallel and perpendicular to the symmetry axis.

For diamagnetic symmetric top molecules in magnetic and electric fields the
field dependent part of the Hamiltonian is?)

g
Hi zeeman = — HN(Q O] 77) J-B @)
and®)
J
Hi ganc = — ﬂe%J‘E, )

respectively. Here, uy and g, are the nuclear magneton and the electric dipole
moment of the molecule, and g the rotational Landé tensor,

g, 0 0
g=|0 g 0}, ©)
0 0 g”

where the symmetry axis of the molecule is taken in the third direction (for
spherical top molecules g = g,). A double scalar product, denoted by ©, with the

symmetric traceless part7fof the tensor product JJ appears in eq. (7). Fractional
notation is used here for products with inverse operators, with the excuse that the
factors commute so that no ambiguity can arise.

For the calculation of transport coefficients it shall suffice to consider first-order
Enskog approximations to nonequilibrium solutions of eq. (2). This means that
we can write the distribution f in the form

f=ra1+4e), (10)

where ¢ depends linearly on the first order gradients of the hydrodynamic
quantities n(r), v(r) and T(r). The quantity ¢ is a selfadjoint operator commuting
with f° and is considered to be “small’ in the region of interest.

The solution for f may be used to determine the mean macroscopic values of
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any observable quantity described by a selfadjoint operator A4,
| ‘
(A}—-;TrJAfdc. ¢h))

If the equilibrium average {4 ), vanishes we can rewrite (4 ) as follows:

<A>:%TrfAf°¢ de. (12)

This leads us to introduce a Hilbert space of operators such as 4 and ¢, with the
weighted Hilbert-Schmidt inner product as in eq. (12),

(A]d;):%TrfA*f"d)dc. (13)

The dagger has been added in case A4 is not selfadjoint. Since ¢ is selfadjoint we
then have if (4 ), vanishes

(Ay=(At|¢)y=(4|d)*. (14)

With the Maxwellian f° varying from place to place, we have in fact introduced
a whole collection of Hilbert spaces, one for each r. However, since only the state
in the vicinity of an arbitrarily selected point will be of interest, we shall be satisfied
with the Hilbert space belonging to that point.

By substituting the known zeroth-order (equilibrium) distribution f % into the
left-hand side of the Waldmann-Snider equation (2) and retaining only linear
terms with respect to ¢ in the rest of the equation, we obtain an inhomogeneous
equation for ¢ of the following form: ‘

v=—nA+i¥). (15)

The operators # and .# and the term § will be explained below.
The linearized collision (super)operator # is derived from the collision term in

cq. (2)").
~f'nRP = C(f°b.f) + CU*.S°¢). (16)

The explicit form of 2 is not important for the present discussion, the only
properties required being its linearity, isotropy (rotational invariance) and its
dissipative nature (positive semidefiniteness)'’). In general £ is not selfadjoint;
instead, by combining its properties under time reversal and space inversion™), we
obtain

A= RAR, (17)
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where R is the angular momentum reversal operator,
Ry(W, D)=y (W, = J). (18)

One should moreover keep in mind that the collision operator has a 5-fold zero
eigenvalue associated with the collisional invariants 1, W, and W+ &, (where
& = H/kT) as the hydrodynamic eigenfunctions.

The precession operator .#, which as part of the one-particle Liouville operator
is selfadjoint, originates from the second term in eq. (2),

CHe f'9] =i (19)

All isotropic-in-J functions, among them the hydrodynamic eigenfunctions of %,
belong to the zero eigenvalue of . since they are not affected by precession. For
a field in the z-direction, which henceforth will be our choice, we find that

n¥¢$=—ol,]. (20)

The Larmor frequency @ (which by convention has the opposite sign of the
precession frequency of the molecules) is

8iUN g — 8. K?
= 1
0 =" [+ 50+ |? @1)
and
K K
CTRIT+Y) (22)

in magnetic and electric fields, respectively, cf. eqs. (7) and (8). Both for
spherical-top and for linear molecules expression (22) as well as the K-dependent
term in (21) vanish, because in the first case g; = g, and y, =0, while K = 0 in the
second.

The inhomogeneous term  in eq. (15) stems from the gradient of the local
Maxwellian'*"%),

¢ VinfoxT /%W(WZ—%@'—M)O%HTW‘@V—T”
5 3 v-
+ T|:(§—?>(W2“§)—(Y — 16~ <«f>o)]7" =v. @

where y = c,/c,.
Since In f° is a linear combination of collisional invariants, it is not surprising
to find ¢ as a bilinear sum of products of microscopic fluxes ¥* and the
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corresponding thermodynamic forces X*,
Y=y ¥ X, (24)

with the factors given in the preceding explicit expression (see also table I). This
can be seen more generally by evaluating the entropy source strength?),

g=—k Jlnf{C(f,f)—%[Hf,f]}dc

=nk ffolnf(%+i$)¢ de

=n’k{nf|(R+i1L)p> = —nk{ ¥, (25)

where we have used eqgs. (16), (20), (13), (10) and (15).
Substitution of eq. (23) yields the more familiar bilinear expression

V.o VT — Vo
=—p — —q—— — =Y J*X*. 2
o P 4 o T Ea: (26)
The first term, related to bulk viscosity, has been simplified by aid of the relation
3 3 p

— = V=2, 27

@ —(En=—(w-3)= 30 @
Each term in (26) contains a macroscopic flux, which can be defined generally as
J=nk(¥*| o). (28)

These fluxes are the heat flux, ¢, the symmetric traceless part of the viscous
pressure tensor, I1, and a third of the trace of this tensor, p’. Inspection of egs.
(25) and (26), using eq. (28) shows the general validity of (24).

The formal solution of eq. (15) reads'®!"?")

¢=—£(91’+i$)“¢. (29)

The inverse operator (#+i¥)~' appearing in eq. (29) is defined on the
nonhydrodynamic subspace which is orthogonal to the collisional invariants.
While ¢ from eq. (23) already fulfills this condition, the definition of (# + i.%) !
demands the same for ¢, i.e.,

(|dY=0, (W|d)=0, (W*+&)|¢)=0. (30)

This coincides with the usual subsidiary condition that ¢ is not allowed to alter
the values of n, v and T prescribed by the local Maxwellian. Relation (27) follows
from (30).
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3. Formal expressions for phenomenological coefficients

The macroscopic irreversible fluxes J% such as the heat flux ¢ and the viscous
pressure tensor I vanish in equilibrium. In nonequilibrium they obey linear
phenomenological laws in the so-called linear regime. For vectorial forces and
fluxes e.g., one has

J“:—ZL’”'X”, (3D
B

where X” is the thermodynamic force conjugate (in the sense of Onsager, see e.g.,
ref. 25) to J#, and L* is a phenomenological second rank tensor coupling the flux
J* to the force X?. Likewise, if the force and flux are second-rank tensors, the
phenomenological coefficient becomes a tensor of 4th rank. Such is the case of
viscous flow, as specified by the third term in eq. (26) and by the bottom line of
table 1.

Only one force and one flux of each rank enter expression (26) for the entropy
source in a pure gas; one pair of conjugate scalars, one pair of vectors, and one
pair of second-rank tensors. This means that in the field-free case for pure gases,
considering the J* and X* from eq. (31) we always have a = . The scheme will
be kept more general, however, since occasionally additional fluxes, such as the
flux of translational or rotational energy, may be of interest. Moreover, as we will
see, in the case of a mixture diffusive fluxes and concentration gradients come in
naturally as additional pairs of conjugate vectors.

Substituting the formal solution (29) with expression (24) into eq. (28) we obtain

Ji=—kYy (P |(R+iL)'PFHY*- X, (32)
B
so that
L =k{(P*|(R+i%) ' PF)*. (33)

For the actual evaluation of phenomenological coefficients it is convenient to
introduce a basis # of orthonormalized tensors to span the Hilbert space. Their
general form is given by

P = (;)m (WP 9J)P,, (34)

where [WY is an irreducible tensor %) of rank p in W, and % a normalized
irreducible tensor of rank g formed from the operator J according to

vy (35)

Y= 0o D G o
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The © now denotes a g-fold scalar product. Since the submatrices of [J)
corresponding to 0 < J < jq vanish?), the definition of %@ is only meaningful
within the subspace corresponding to J > 3¢. Hence the quantummechanical trace
of an operator containing % @ involves a summation over J beginning only with
J =1q or (g + 1) (whichever is integer).

The last factor P, in expression (34) is a scalar operator and may depend upon
W?, J* and J;. One should actually write PP(W?, J?, J}), since the set is different
for each pair (pg). However, for the sake of brevity the superscripts will usually
be omitted. Recent experiments®*) have shown that the usual expansion into
Sonine (associated Laguerre) and Wang-Chang—Uhlenbeck polynomials does not
lead ot a satisfactory description. Therefore a more general treatment will be given
here and the form of P, will not be specified in advance. While p and ¢ stand for
numbers 0, 1, . .., specific values of the label s will be designated by letters. For
instance the basis function representing the total heat flux is®)

@ = ﬁ[W}lB(l + rz)]*m [WZ ve- <é‘>o] = 2[WI'P;,  (36)

where r? = (2/5)c,/k and p =1, g =0, while the normalized scalar factor P; is
characterized by s = E for energy.
The tensors @7% shall be normalized as follows;

(B | DYy =5 5, 5, APAD 37)

PP 49

where 4 is the projection tensor producing a symmetric traceless tensor of rank
p from any tensor of that rank®). Translated into spherical components the
normalization condition reads*)

<¢;’ﬂs I ‘1’;’11‘55‘> = 5pp’5qq'5ss6w’6w ’ (33)
with

2p 1/2
ore=(Z) [(Wpa@P,. (39)
u 1 u

For eqgs. (37) and (38) to hold, the sets {P¥?} must be orthonormalized as
follows:

22pp ! we P(M)I Wwrpes o (40)

P & — .

TERTRGALE oy =5,
where the trace involved in (.. | ..y is carried out according to the value of g,

as explained before. For instance, if ¢ =2 and if a particular P%? is to be a

* The relation between spherical and Cartesian components of a vector W is taken to be as in
Edmonds®), Wy=W_; W, = i%\/Z(Wx+iWy), and is analogous for tensors where spherical

harmonics or their operator analogs come into play.
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constant, we must take P%? = (1 — Z_)"2. However, such precaution is usually
unimportant since the state with J =0 only carries a small weight, except in
hydrogen at low temperatures.

At this point some additional remarks concerning the choice of the basis (34)
need to be made. First of all, the set of basis functions # shall include the
normalized microscopic fluxes

Wa
@ = 41)
where C® are normalization factors (see table I). Note that from now on labels
of microscopic fluxes stand for triplets a = (r,, 0, 5,) and f = (r4, 0, s5). The two
fluxes considered in (33) are isotropic in J, hence ¢ = 0, and both usually have the
same rank (r,=rg) in W; yet the scalar factors P; may differ.

Basis functions which are anisotropic-in-J are called polarizations. Occasionally
one has to switch from one orthonormal basis {®"*} to another one {®"} by
choosing a different set of scalar factors, without changing the tensors. Basis
functions of the different sets may then be transformed into one another by

o

o =Y a0l )
where the indices s and § refer to the two different sets, respectively. The coefficient

2pp1
paiN 2%p!

= (s ="
as.\' <¢;lv |(ppv (2P + 1)'

(WP,

WeP, . 43)

represents the component of @2 proportional to @4

The matrix elements of the inverse operator (# +i%)~' in eq. (33) will be
approximated in terms of matrix elements of # within a finite subset of the
orthonormal basis. Because of the isotropy of #, these matrix elements can be
decomposed according to the Wigner—Eckart theorem into isotropic tensors and
scalar factors, the so-called reduced matrix elements. This is done following the
coupling scheme of Chen, Moraal and Snider’), which is analogous to
Russel-Saunders coupling in atomic physics and which is preferable for analogous
reasons. As the effects of the nonspherical part of the intermolecular potential are
small, first the velocity tensors are coupled, similarly the angular momentum
tensors, and then the coupling between W and J is considered. Explicitly,

(P | APy =3, PP d (=Dt JO(pp’L)R(gq’L)
LM

pp L qg ¢ L P q s
. (44
X (_‘u #/ _M><_v v/ M) SL(p/ q/ s/) ( )
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The isotropic tensorial factor is represented in terms of 3j-symbols™) and the
corresponding normalization coefficient

(I + DU — 2V = 2)(I — 2113 — (= 1Y
QDL 2

QLbLL) = (45)
with / =/, + I, + ;. The reduced matrix element S, is customarily expressed by an
effective cross section &,, which describes the collisional coupling of the pgs and

i

the p’q’s’ tensors,

P q9 S Ky
sL(p ! ) (6% <p : S,), (46)

where (v ), is the average relative speed of a molecular pair,

o= [— 6KT 47

According to the established convention the subscript L in (44) is omitted if only
one value is possible. Furthermore, if pgs = p’q’s’ one row of indices is suppressed
and similarly the last column if P, = P, = const. A cross section with pgs # p’q’s’
is called a production cross section when either ¢ or ¢’ equals zero, and a transfer
cross section when neither ¢ nor ¢’ is zero. If pgs =p’q’s” and g # 0 it is called
a decay cross section.

Next, we have

. 1 .
Loy = — Pl LA 48)
and thus the matrix elements of the precession operator are
(0| LOLLY = — 8,00g0,50,,0,, v(wa o - (49)

The equilibrium average of P? is to be understood in the sense of eq. (40), hence
with the additional weight oc W? included and, e.g., with the J = 0 term deleted
if ¢ = 2. For linear molecules  does not depend on J so that (Plw )y =w

4. Perturbation scheme

Coupling between W and J can only be caused by a nonspherical potential. In
the cases of interest here the result of this coupling averaged over all collisions
is small as one can conclude from the observed magnitude of field effects.
Therefore the complete set of tensors @ (34) is split into a part 5, containing
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all tensors which are isotropic in angular momentum (g = 0) and a complementary
set #, (q #0). Also the collision operator is decomposed®*"*%)

R=Rs+ Rpq. (50)

The block-diagonal part %, has nonvanishing matrix elements only within the
subspaces spanned separately by 5, and by #’,, i.e. 4 couples only the tensors
within each of these subsets. The nondiagonal part #,4, on the other hand,
accounts for the weaker coupling between tensors from #, and those from ).
Symbolically

<fo|§?d3f1>=0, <‘#0|Qnd'yf0>':0’ <'}f1|9?nd-#1>=0~ (51
Treating %, as a perturbation, we expand the operator (% +1.%) -1 accordingly,

(RB+iL) = (R +1L) " = (Ry+1L) "' R Ry + L)
F (R +iL) B R +1L) R Ry + 1) +.... (52

Since the microscopic fluxes ¥* and ¥# are isotropic-in-J, the precession
operator drops out from the zeroth-order contribution to L*. In spherical
coordinates,

L0 = k(P8 | (B +iL) " WEY* = kW2 R P . (53)

Because of the rotational invariance of 4, the tensor L*# is isotropic. To a good
approximation it represents the field-free value LY _,. We now re-express (53) in
terms of matrix elements with respect to the chosen basis, and apply the
Wigner-Eckart theorem (44),

L0 = kC*CH{(®%| Ry 'L = 8,,kC*CPS - '(;> : (54)

where S ~'(5) is the reduced matrix element of £, !. To obtain this element we first
consider all the reduced matrix elements of %, with respect to J,. These matrix
elements constitute a matrix

S@) SG.... S@) SG)...
S=| SO SB)....|=)| O SB)... |- (5%)

In practice inversion is carried out with finite matrices constructed with a finite
subset {¢° @7, ...} from #,, whereby approximations to S~ '(3) are obtained. In
the simplest approximation, i.e., if only one tensor @* from 5, would be taken
into account, we have

S~ ') = (56)

1
<” >06(‘1) .
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If two tensors @ and @* are taken into account, then
1 ¢
(v S(@)S(B) — SHEE)
The first-order contribution L vanishes, because the nondiagonal operator
is sandwiched between two isotropic-in-J factors. So we must include the

second-order contribution, which to a good approximation contains the field
dependent part of L%,

LD = k(W2 | Ri ' Ros Ry +1L) ™ ' Rog R P )* (58)

(57)

S =

We are mainly interested in the change of phenomenological coefficients in a
magnetic or electric field defined as

AL;‘jﬁf = L;‘Z’}(B; E)— L;ﬁ(O) z Lzﬁlzl(B; E)— LZ;":P](O) , (59)
where L(B; E) denotes a function of B or E. The factors
Zaz'@ndgd?l.pa, xﬂ='@nd'@d-lwﬂa (60)

appearing in eq. (58) represent linear combinations of polarizations produced in
collisions by the microscopic fluxes ¥* and ¥#, respectively. This can be stated
as

=33 @r+ ])1/2<P :1 r )K<po¢;S) L 61)

’
pgs w'v u —H

where r is the tensorial rank of ¥*. The coefficients are given by

(2r+1)‘/2(:, 9 ’)K(p“ >=<¢’;‘i‘ylxz>=C“<<Pﬁf’,il9?nﬂg'¢‘;>- (62)

v —u qs
Expression (59) with (58) can now be simplified,
ALY, = k(R: | [(Rs+12) " — RT Vx> (63)

where we have used the adjoint from eq. (17).
In order to simplify the evaluation of the field dependence of phenomenological

coefficients one usually makes the so-called spherical approximation in the
calculation of the matrix elements such as in eq. (44). The approximation consists
in neglecting there all terms with L 5 0 whenever none of the p, p’, ¢, ¢’ equals
0,

(ot

yr ot s
RPP ) = 5##’5vv'5pp'5‘i”'<v >060(:‘;Is /) ' (64)

The name of the approximation refers to the fact that for an isotropic (spherical)
potential all terms with L # 0 vanish*). Generally the L # 0 contributions, which
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measure the coupling between W and J, are expected to be much smaller than the
spherical (L =0) contribution. The spherical approximation allows a simple
formula for the saturation values of field effects. Inserting expression (61) into (63)
and by taking w —» o0 we obtain

AL (0) = — k(RF%| R5 75 . (65)

Modified functions 5% must be substituted, differing from the original yj insofar
that the terms with v = 0 in the sum (61) are deleted. The formula will be useful
in the discussion of general properties of phenomenological coefficients in section
6.

Experiments have furthermore shown that field effects can accurately be
described with a very limited number of polarizations®). For each allowed
combination of p and g (cf. eq. (44)) the orthonormal set of scalar factors P, can
apparently always be chosen in such a way that in equation (61) only one tensor
@7 has to be taken into account. In other words, the polarizations @ 7% produced
by the microscopic fluxes are eigenfunctions of #,. This means that the collision
operator is diagonal within the subset of 5, relevant for the representation of the
x*. Thereby the matrix inversion of (#,+ i) ' is greatly simplified. One has

Pq: | (Ry+iP) q;pqs >* - 5pp5qq 5555”‘ 5W [So(pqs) + % v(wa)O] s (66)
so that

| (R +1L) ' BLEH*

1 iva !
- b P aspa ] )
5;'1» 5qq O 5#;4 v S o(pgs) < [ " nSO(PqS)] >0 )

To evaluate the matrix elements of the operator product in eq. (58) we twice
insert in Dirac fashion the unit operator in form of a complete set of projectors
Z|...){...|. With the diagonality of (%, + i)' within ¢, taken into account,
eq. (59) with (58) leads to

AL = kC*CPY (D% | Ry ' Rog®P) O (D7 |[(By + L) — Ry '@ )*
Pqs
O (™| R ') . (68)

As before,"a and B stand for triplets of labels: « =r,, 0, s, and f =ry, 0, 5. After
insertion of two more sums of projectors between the #;' and #,, in (68),
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application of eq. (44) with (67) yields (for r,=r;=r)

af af pPtag+r pp r o\
AL}, = 6,,kC*C Z(—l) .Q(pqr)z i

pqs K,V v —H

e i 1 " Covo ]! B

* Z,S <1) S(pqS) So(pgs) <P’ {[] i nSo(pqS)J 1}>0

y s(”‘?s) sA'(j ) (69)
J B

where the summation over the intermediate triplets i, j refers to tensors @,
@/ # ;. The expression for the relative magnitude of the field effect may now be
written in the standard form

aff ’
éﬂrzwmu+a,,laqz><—1)ﬂ+q+'9(pqr)Z(” . f,,)

L;ﬁ p4s v\ V
X <P§[f(vépqs) + ig(vﬁpqs)]>0 ’ (70)

with the coefficient of the pgs-polarization defined as

e MR ()
o= (1= 30,00) VORI AT T a

s (;) So(pgs)

and the field parameter

1
nSo(pgs)

Cpps =@ = Wy - (72)

Factors containing Kronecker delta symbols have been incorporated in order
to get ¥’s identical to the ones defined in the literature on this subject. The field
dependent functions are given by

2

S@) = g =7

14+ x*

(73)

Specific examples of the field dependence (70) for linear molecules for r = 1, 2 and
various values of pg can be found in refs. 36 and 37.

5. Mixtures

The microscopic state of an N-component mixture of dilute gases with internal
degrees of freedom is specified by the distribution f, for each molecular species
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k. In steady state the fi(r, ¢;, J) obey a system of Waldmann—Snider equations,
ck-m+%[ﬂf,k,fk]=;ck,(ﬂ,f,), ki=12...,N, (74)

where the collision terms now represent the rate of change of f, resulting from

binary collisions with particles of the same and of all other species. The local
Maxwellian is

=) L exp(— wi— g, (75)
KT KT ) Z, PUT RT 0K
where x, = x,(r) is the mole fraction of component k and
L
W, = KT (c,—v). (76)

In the nonequilibrium state, each f; is considered to be close enough to
equilibrium that £, can be written in the form

fe=fil+ ¢0). (77

The barycentric flow velocity of the mixture is defined as

v — Zk XMy by ’ (78)
Zk Xy,
with
1
b= Tt J e/ de, (79)
nx,

For a quantity 4, which for each species is specified by A4, the nonequilibrium
average is calculated according to

<A>=%ZTr jAmcdck. (80)

In analogy to the case of a pure gas it is useful to introduce a Hilbert space of
arrays of operators such as 4 = (A4, 45, ..., Ay) and ¢ = (¢, @,, . - ., Py), With
the inner product

(4 |¢>=%;TrfAm’¢kdck- @81

This definition will lead to final results of similar appearance as in the case of a
pure gas. The deviations ¢, obey the linearized system of equations

Y= — ”Z(@+i$)k1¢1, (82)
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or, in short
y=-—nZ+iL)¢, (83)

which is derived in the same way as eq. (15). The Waldmann-Snider collision
operators #,, constitute a matrix # of operators, while £ in (83) stands for a
diagonal matrix of this kind. It is to be noticed that each diagonal element %,
still contains contributions from binary collisions with molecules of species other
than k. In analogy with eq. (16) we notice that

—fin Rt = Cu(fin SR + 21: Cl R 1) s (84)
—finRud = CAfLf10), 1 #k. (85)

Proceeding as for the pure gas, we obtain a formal solution of eq. (83),
1 .
o=~ @iV, (86)

or explicitly

1 .
= — 7 ZI: (2 +i2) ¥, (87)

with [(# +1%) "), the ki- element of the inverse operator matrix (% +i%) "
defined on the nonhydrodynamic subspace. The hydrodynamic subspace is richer
now; for a binary mixture, e.g., it is 6-dimensional, with a basis consisting of the
arrays (1,0) (0, 1), (m\*W,, m’W,) and (Wi+ &, Wi+ &)).

The definition of (# +1.%)~' implies the orthogonality of ¢ to the hydro-
dynamic eigenfunctions. Thanks to the chosen inner product (81), this prescription
coincides with the condition that ¢ in eq. (77) shall not alter the partial densities
nor the flow velocity or mean energy of the mixture*).

The inhomogeneous term again has the form

Y=Y ¥ X, (88)

which now means that

Y=Y P X (89)
o
The relevant microscopic fluxes ¥ and the corresponding thermodynamic forces
X* for a binary mixture are listed in table II
* With a different choice of the inner product, e.g. with different weights in the sum in (81), the

mentioned coincidence is destroyed. If the matrix elements of 4 are to remain the same, the definition
of this operator matrix must also be modified, resulting in unnecessary complications, see e.g. ref. 32.
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As before, the macroscopic fluxes are obtained from nonequilibrium averages
of microscopic fluxes,

T = nk (P*| §)*. (90)

Substituting the solution (86) we see that
Jo=-YL%-XP, on
B
with
LF = k(P |(R+1L)" ' PF)*. (92)

In analogy to the case of a pure gas we consider a set of tensors (cf. eq. (34))

pgslk ¥ v aY @
@rek = . WY 9P, . (93)

In Hilbert space formulation, ®”*/* may be considered as an array consisting of
zeros except for component k, which has the value indicated in (93). These arrays
then satisfy the orthogonality relation

(@rasle | @RI = X,8,,8,10 04 Ou0 Oy - (94)

The normalization is to x, instead of unity so as to have a concentration
independent basis. The microscopic fluxes can now be written as a linear
combination of such tensors,

p:=Y Ccilplt o =(r,0,s), 995
k
which is actually an array with the elements from (93) multiplied by factors C*.
Consequently, we can rewrite eq. (92) as a linear combination of matrix elements
of the inverse collision operator within the basis J#,

L =k Y CkCP k| (R +iL)~ DA)*. (96)
k.l

The matrix elements of the collision operator are factorized as in eq. (44),

)

o7

<(bﬁ€‘|“ | ,@(bﬁ’,‘ii"b = Z ip*p#q*q/(_ I)L+p+q+u+v'\/Q(pp/L)Q(qq/L)
LM
! L © L s
X < p p/ )( q q/ >SL<:/ q/ ’
—pu W —MNAN-v vV M q s

As can be seen from egs. (97), (84) and (85), the reduced matrix elements SL(?Z'?“)
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now depend upon the concentrations. They may be expressed in terms of
concentration-independent cross sections as follows:

P s |k s |k
O SO o R E O i B (278 (98)
q 5’|l q s\ Ju
p q slk p q sk
S = .
L(pr Y k) Xllxkxl<vk1>oeL<p, Y k)k[ 99)

The cross section S, gmf‘)k, describes the coupling between a pgs-polarization of
a molecular of species k and a p’q’s’-polarization of a molecule of species / by
collisions between species k and /, and (vy,), is the corresponding average relative

thermal speed,

/8kT
Vo= [—, (100)
< k1>0 [ Ty

with g, the reduced mass.
The matrix elements of the precession operator are

<¢ﬁ€5|k | $¢f‘l3:5|/) = - 6pp’6qq'6ss'6k16;m‘6vv’ % v<P§,kwk>0 ’ (101)

with the Larmor frequency w, as before.

As an example we consider a binary gas mixture, consisting of a polyatomic gas
(species 1) and a noble gas (species 2). As only component 1 has angular
momentum, polarizations (g # 0) will exist only for this component. Thanks to
the previously introduced formalism the evaluation of expression (96) for L*
follows the same scheme as in the case of a pure gas. First, the collision operator
matrix is split into a diagonal and a nondiagonal part. Then the inverse
(#+12)" is expanded in terms of #,4, and the second-order contribution is
calculated using the spherical approximation. The result for the relative change
in the phenomenological coefficient has exactly the same form as before (eq. (70)),
except for the more complicated expression for i,

_falk i pas|\\ [ J
s (b (4)
oo = (1 = 16,,8,7) ’ as|l)\ J Bl 02

1 k
s 1)

pqs W
0<pqs 1) ZkJ: 1,2 S (ﬂ

In approximating the elements of the inverse operator matrix S ~' by finite
matrix inversion one has to keep in mind that the basis functions used are not
normalized to unity, cf. eq. (94). The final results can be expressed in terms of
concentration independent cross sections by means of eqgs. (98) and (99). Explicit
expressions for ¥,,, for some transport coefficients are given in refs. 32 and 38.
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For a binary mixture, the set of thermodynamic fluxes is enriched by the
diffusive flux which is a polar vector just like the heat flux. The corresponding
cross phenomena, thermal diffusion and the Dufour effect, may therefore also
occur. The constitutive relations which describe these four phenomena, in addition
to viscous flow, are

kT
g= 4 VT-209 Vx, (103)
XXz
1 1
vl—v2=_ DT-VT____D.VXI, (104)
X1X2T X1X3
T=-20Vv. (105)
The difference of the velocities v, and v, from eq. (104) is used to describe the
diffusive flux instead of the usual®”)
. n'‘mm )
Ji= 1 2x1x2(v]—v2)=_]2, (106)

with the total mass density given by
p=nYy mx. (107)

The coefficients D, D, @ and n are the diffusion, thermal diffusion, Dufour and
viscosity tensors, respectively. By substituting the expressions of table II into eq.
(96) we obtain explicit expressions for the coefficients L*. They are related to the
conventional phenomenological coefficients by

1
A ZFM’ (108)
D, = ey (109)
T
XXy, .
G =—=LY 110
LY, (110)
D = x,x,nklL¥ , (111)
_! L= (112)
"_2T )

as can be seen by comparing the gradients in eqgs. (103) through (105) to the
thermodynamic forces X* listed in the tables.
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6. General properties of phenomenological coefficients

In the absence of external fields the phenomenological coefficients are given by
matrix elements of the inverse collision operator. This operator is isotropic and,
if optically active molecules are excluded, also invariant against space inversion.
Therefore only microscopic fluxes of the same tensorial rank and parity couple.
The phenomenological coefficients are, just as the approximation L;ﬂ[m ineq. (53),
therefore real isotropic tensors),

L =5, L. (113)

From the time reversal invariance of molecular interaction one obtains the
Onsager relations

L= LF, (114)
where we have used the fact that # couples only microscopic fluxes which have

the same time reversal symmetry. Since # is a positive semidefinite operator and
its inverse is positive definite on the nonhydrodynamic subspace, we have

L%>0 (115)
and (from the Schwartz inequality)

(L < L=LP. (116)
Note that egs. (115) and (116) are a consequence of the dissipative nature of the

collision term, or equivalently, a consequence of the positive definiteness of
entropy production, cf. eq. (26).

In the presence of an external field, L. is given by (33). Since the operator
(#+1%)" occurring in this equation is no longer isotropic, coupling between
tensors of different rank becomes possible. For instance, cross effects between bulk
and shear viscosity appear®). On the other hand, the parity selection rule still
holds. Therefore, e.g., heat flow cannot couple to viscous flow. The operator
(#+1%)"" is, however, still invariant with respect to rotations around the field
direction. Therefore, since the polar axis was chosen along the field direction, the
phenomenological tensors in the presence of an external magnetic or electric field
are diagonal in spherical representation

L#(B; E)=0,,L}}(B;E). (117)
Similarly, from a rotation of 180° around an axis perpendicular to the field it
follows that
LB, E)=L(- B, — E), (118)
which means that the real part of L is even and the imaginary part odd in the
field.
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From time reversal symmetry one obtains the Onsager—Casimir relations®)

L*B,E)=L!(—B;E). (119)

it p

Combination of eqs. (118) and (119) yields
Ly(B;E)=L{}(B; - E), (120)

so that for a = f§ odd-in-field coefficients vanish in the electric field case.
If space inversion symmetry applies one also obtains

L}(B; E)=L%B; — E), (121)

so that then in the electric field case all odd-in-field coefficients vanish.

The saturation value of the field induced change in L2 is given by eq. (65). The
operator &, occurring there is, just as Z# itself, positive semidefinite since for any
¢ =@, + b, with ¢,e #, and &, e H,,

(D | RD ) =(Py| RDy) + (D, | RD,) > 0. (122)

Consequently, for « = and y* and thereby 7* even-in-J, so that Rf*= x*, we
have

AL®(0) <0 . (123)

uu
On the other hand, if y* and thereby j* are odd-in-J the saturation value is
positive,

AL*(00)>0. (124)

"

Let us now investigate the cross effects. The value of AL%(o0) for a # f will
be seen to obey a Schwartz inequality. For arbitrary @ and b one has

<ax;“,—bxﬁ|%d_l(axj—bxﬁ))?(). (125)
Thus with

a = (Gl Ra 0y i ' (126)
and

b= s | i )| A ' (127)
it follows that

AL A A XA E I A E (128)

If x* and x” are either both even or both odd-in-J this inequality may be written
as

(R | Rg xay R R aly = (R | R Wi Rl | Ra ' x5y - (129)
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With x2, x# replaced by 73, 7% we have
ALj(00)ALf(o0) > [AL (o)) . (130)

Equality holds only if x* is proportional to x# and consequently §* to 7%, which
implies that both microscopic fluxes couple to one and the same tensor or, in the
usual jargon, both microscopic fluxes produce the same polarization. Equation
(130) is then a generalization of the relation between thermal conductivity,
diffusion and their cross effects derived by Eggermont, Vestner and Knaap®).
Experimental results for these three effects, however, satisfy the inequality rather
than the equality”™). On the other hand the same results show that the polar-
izations produced by heat and diffusive fluxes respectively have the same tensorial
factor (i.e. the same values of p and g¢). Since the polarizations are not
proportional to each other, this shows that the scalar factors must differ.

In order to derive a relation between these effects in this case we therefore need
to consider two sets of basis functions {®° ®F @ ..} and
{®°, ®F, @7, .. }. The sets are chosen in such a way that & is the only
anisotropic-in-J basis function which couples to @°, and ®#¢# the only one to ®°*.
Hence both @7 and &7® are eigenfunctions of #,. Since this operator is
selfadjoint, @74 and @7 must be orthogonal to each other, unless they belong
to the same eigenvalue, S(pg4)= S(pgB). These decay constants indeed appear
equal in the sets of experiments carried out so far®®). Moreover, nonorthogonality
of the eigenfunctions is established by the nonvanishing infinite-field contribution
to the corresponding cross phenomena.

With each set, the summation over p, g and s in (61) reduces to a single term,
which we substitute into eq. (65). After using an orthogonality relation for the 3-j
symbols™) we find for r, = r; =r that

P q r 27 o 2 .
ao —(— g+ 1 _ S ,
AL®(c0)=(— 1) k[l (2r+1)<u 0 _y)]LK<qu>] (rq)
(131)
- p g rY] BT o
AL(0) = (= 1) k[l—(Zr-H)(/i 0 _“)_[K(quﬂS "(pq),
(132)
AL (00) = (— 1)4+1ka,,,[|—(2r+1)(5 . _;)}
o B\
XK(qu>K<qu)S "(rq), (133)

where S(pq) is an abbreviation for S(pgA4) = S(pgB), and the overlap integral a,,,
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is defined according to eq. (43). Obviously,
[AL%(c0)P = a%pAL%(c0)ALE (), (134)

which is in agreement with inequality (130) since a%; < 1. Eq. (134) makes it
possible to use the observed saturation values of the three field effects for
determining the coefficients a .

The kinetic theory presented above coherently describes the large class of field
effects which has been studied experimentally during the last two decades.
Previously existing discrepancies between theory and experiment are eliminated by
adapting the scalar factor of polarizations to the particular type of phenomenon
under consideration, instead of the customary expansion in fixed orthogonal
polynomials. The uniform reformulation of the theory, both for pure gases and
gas mixtures, yields clear insight into the relations existing between the various
field effects.
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