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Raman conversion using crossed broadband pump beams
and bisecting Stokes
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The effects of stimulated Raman conversion under the conditions of crossed pump beams and a bisecting injected

Stokes are examined. It is found that the beam quality of the emerging Stokes wave and the effective gain can be

characterized by the following two parameters: the temporal coherence of the crossed pump beams and the angle
between the pumps.

INTRODUCTION

The problem of Raman "beam cleanup" has recently at-
tracted considerable attention.1' 2 Technically a misnomer,
this term refers to stimulated Raman scattering of a high-
beam-quality (near-diffraction-limited) Stokes wave by an
aberrated pump wave. If the Stokes wave amplifies at the
expense of the pump wave without aberrating, it is said to
have undergone Raman cleanup. In the case of a monochro-
matic pump, Raman beam cleanup is indicated by the right-
hand side (rhs) of the Stokes equation in the slowly varying
amplitude approximation3 :

a,6, + (2ik)- 1VI 2 e6 = gl6p12 8/2. (1)

In Eq. (1), ks is the wave vector of the Stokes, I,0,2 repre-
sents the pump intensity, 6, is the (complex) Stokes ampli-
tude, and g is the gain (in centimeters per watt). 6, and 6p
are assumed to be collinear. We note that the phase of the
pump does not enter the rhs of the equation. In what fol-
lows, we assume that the pumps are broadband and the
Raman band width is less than the laser mode separation.
We likewise assume near-uniform intensity variation of the
pump. If the pump is not uniform, effects such as anoma-
lous Raman dispersion 4 and transient refractivity 5 can be-

come important. In the case of a broadband pump (many

longitudinal modes), the Stokes equation is generalized to6

asse + (2ik,)-1 VI2 C8j = (g/2)Gpj y (g*pks exp(iaJkZ),
k

(2)

where 6 %j is the amplitude of the jth mode and

aik = (kpi - kpk) (i - n,(3)

where n, and np are the refractive indices at the Stokes and
the pump wavelengths, respectively. If we restrict ourselves

to the lowest laser transverse mode and if all longitudinal
modes have the same transverse wave front, 7 then one sus-

pects that there may again be no transfer of phase informa-
tion from the pump laser to the Stokes. This argument is
ultimately a ray-optics argument since it ignores the effects
of the diffraction. Diffraction can convert pump phase to
pump intensity, which can have profound effects on the
Stokes wave. The ray-optics domain of validity can be char-
acterized by saying that the variation of the pump phase
over a Fresnel zone (as viewed from the end of the Raman
cell) is small compared with a radian. We shall henceforth
assume this to be the case. 8

Furthermore, for most cases of interest, the dispersion
term on the rhs of Eq. (2) can be neglected. We may then
write Eq. (2) in the form (now neglecting diffraction)

aO|S) = P) (PIS), (4)

where we have adopted the bra and ket notation from quan-
tum mechanics.9 If N is the total number of modes,

(P
IP) =1. I

where similar definitions apply to the Stokes and

i= (WSX R/nc)1/2gpi = (g12)1126

St = (WpX//R/npc)1/2 &si.

(5)

(6a)

(6b)

In Eqs. (6a) and (6b) cos and cp are the angular frequencies
of the Stokes and pump lasers at line center, c is the speed of
light in vacuum, and X"R is the real part of the third-order
polarizability. Equation (4) can be augmented by a corre-
sponding pump equation and the combined system solved,10

but we shall treat only the pump-nondepletion limit here. A
formal solution of Eq. (4) can be written in the form (ISO) is
the Stokes at z = 0 and P2 (PIP) = IPiI2):
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Is) = ISO) + [exp(zlP 2) - 1] ( PIP)

= exp(zIPI2)IP) (pIp°) + 1- IS1_ O),

S

(7)

showing the well-known result that the gain is the broad-
band Raman gain. Equation (7) also shows that it is only
the component of the Stokes along the pump (in the Hilbert-
space"i sense) that amplifies; the orthogonal component
does not grow.

MISALIGNED SINGLE-PUMP-STOKES SYSTEM

If the pump and Stokes beams have an angular offset, new
complications arise. For sufficiently large mismatch angles,
amplified spontaneous Raman conversion will occur. This
arises since, as we shall see, the broadband gain decreases
with increased mismatch angle. Eventually a point is
reached at which the amplified wave at the higher gain
(along the pump direction) dominates the injected Stokes at
the lower gain (along the injected-Stokes direction). We
restrict ourselves to the angular region where Raman-ampli-
fied spontaneous emission is not significant.

If the pump and Stokes are misaligned, then the rhs of Eq.
(2) must be modified. The rhs of Eq. (2) becomes (without
dispersion)

rhs = (g/2)pj E *pk6,k expi(kpj - kpk)
k

X [(cos - 1)z + sin Alxl, (8)

where the propagation vectors of the pump and the Stokes
lie in the xz plane, with the Stokes taken along the z axis, and
4 is the angle mismatch. The effect of the z exponentials is
to reduce the gain-the effect of the x exponentials is to
reduce the beam quality. Conditions for high gain with
good beam quality can be found by simply requiring the
exponential terms to be negligible. (We use similar tech-
niques with crossed pump beams as well.) From the form of
Eq. (8), we have (we assume that A << 1)

(Ak4 2 L,)/2 << 1

(vanishing of the z exponential) and

(Ak4'D) << 1

(9)

(10)

(vanishing of the x exponential). In inequalities (9) and
(10), Ak is the bandwidth of the pump laser, L, is the conver-
sion length ( (IPI2) -), and D is the beam diameter.

inc

>- 
Fig. 1. Geometry for stimulated Raman scattering with two pump
beams PI and P2 and an incident Stokes beam Sinc bisecting the
pump beams. S represents radiation scattered at an angle Q with
respect to the incident Stokes beam.

X

X

z

Fig. 2. The coordinate system for the problem. The z axis is in the
direction of the scattered Stokes. The z' axis is in the direction of
the incident Stokes. The unprimed coordinate system is used
throughout.

P2= 2 m explikp.[z cos(Q - 0) - x sin(Q - 0)]}. (12)
m

The scattered Stokes at the angle Q can be written as

S = E S exp(iklz) (13)

and the Stokes in the incident direction as

Sinc = > Sqinc exp[iksq(z cos Q - x sin Q)]. (14)
q

Generalizing Eqs. (2) and (8) to include crossed Raman
beams now yields

4

VI zSn => Brn (15)
r=1

where

Bin = Pin , P* mSminc
m

X exp (ilkpn[z cos(O + 0) - x sin(Q + 0)]

CROSSED PUMP BEAMS WITH BISECTING
STOKES

The geometry that we consider is outlined in Figs. 1 and 2.
The angle between the pump beams is 20, and the incident
Stokes is assumed to bisect the pump beams. We choose our
coordinate system such that the z axis makes an angle Q with
the incident Stokes. We may represent the pumps as

P, = l Pn explikpn[z cos(Q + 0)-x sin(Q + 0)], (11)
n

- kpm[Z cos(Q + 0) - x sin( + )]

+ km(z cos Q - x sin Q) - kz)),

B2n = P2 n 1 P*2mSminC
m

X exp(ifkpnz cos( - ) - x sin(Q - 0)]

- kpm[z cos(Q - 0) - x sin(Q - 0)]

+ km(z cos - x sin Q) -ksnZ0)
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B&n= P , P*2mSminC
m

X exp(i~kP,[z cos(Q + 0) - x sin(Q + 0)]

- kpm[z cos(Q - 0) - x sin(9 - 0)]

+ ksm(z cos Q - x sin Q) - k8nz)), (18)

B4 n =P2. E P*lmSminC

m

X exp(i~kP,4z cos(Q - 0) - x sin(Q - 0)]

- kpm[z cos(Q + 0) - x sin(Q + 0)]

+ ksm(z cos Q - x sin Q) - k,,z)), (19)

We will find that the B, and B2 terms are inherently
different from B3 and B4. Consider just the x exponential in
B3. This vanishes when

-kpn(O + Q) + kpm(Q + 0) - ksmQ = 0. (20)

Ignoring intrapump and intra-Stokes wave-vector differ-
ences, this leads to the condition

2kp0
Q = Q _ ---- (21)

Similarly, the x exponential in B4 vanishes when

2kp0

-k (22)

There is a simple interpretation of these angles. The
crossed pumps form a grating with period Xg,12 where (X, is
the pump wavelength)

Xg 20 (23)

The Stokes then scatters off this grating at an angle ±Q,,
where

X = 2kP0
Xg k8

(24)

To obtain significant wide-angle scattering the z exponential
must be small; otherwise integration along the scattering
direction will average out to negligible values. This require-
ment yields (L is the cell length)

2k 2

P L0 2 << 1 (25)

or

0 < 01 - (k,/2k 2L)1/2 (2kL) -1/2 (26)

This corresponds to XpL << Xg2, that is, an optically thin
grating.

As the wide-scattered radiation grows, Sinc on the rhs of
Eqs. (15)-(18) must be replaced by Sinc + S. However, we
shall not pursue amplified wide-scattered radiation further.

Inequality (25) gives an upper bound on 0 at which wide-
angle scattering can occur. A lower limit can be seen from
Eq. (23). When the spacing of the grating planes exceeds
the diameter of the beam, then the pump beams can be
considered collinear. Alternatively, the wide-scattered ra-
diation is within the diffraction angle. We shall return to

the collinear case below. In any event, we note that wide-
scattered radiation can be observed only in the range

(27)X8/D diff < 0 < 01 = (2kpL)-1/2.

Let us return now to the B, and B2 terms. We will show
that these produce forward scattering. Outside the wide-
scattering regime giveIs by Eq. (27) these are the only terms
that play a role in Raman conversion. The x-dependent
terms in B, are of the form

[(kpm - kpn)(0 + Q) - knQ]x. (28)

These terms can be neglected only for Q = 0, for then this
expression becomes

(kpm - kpn)xO(< AkDO), (29)

which we assume to be small, as in inequality (10) above (or
else beam quality is not preserved). The vanishing of the z
exponential yields the same result as inequality (9) (with 0
substituted for i). Likewise, the conditions under which
the B2 terms lead to good beam quality with high gain repro-
duce inequalities (9) and (10). Let us now assume that

(30)

(31)

AkDO << 1, 0 << 02 (DAk)-',

AkO 2L/2 << 1, 0 << 03 (2/AkL,)" 2 .

We now have for forward Raman scattering

azSn = Bln + B2 n- (32)

Using the Hilbert-space notation, we may recast Eq. (32) in
the form

aXIS) = IP1) (P11 + IP 2 ) (P 21]IS). (33)

This equation can be formally solved as

IS) = exp[z(IP,) (P1I + IP2) (P21)]IS(z = 0)). (34)

Expanding term by term, we find that

IS) = [1 + z(IP1) (P11 + IP2) (P2 1) + *. .]IS(z = 0)). (35)

We consider now the following two limits:

(1) The two pumps are temporally correlated with the
same spectral distribution:

IP 2 ) = 3IP1), (36)

where # is a constant. From Eq. (7) we now have [let ISO) =
ISinc(z = O))]

IS) = ISo) + {exp[(1 + # 2 )(PIP)Z] - 1IP) (PIS O), (37)

where IP1) is a unit vector in the (Hilbert-space) direction of
IPi). In this case we say that the Raman amplification
proceeds through multibeam gain.

(2) The two pumps are temporally uncorrelated:

(PlIP 2 ) = [((PIP,) (P21P2 ))/N' 1/2 exp(ix), (38)

with x random and N equal to the number of modes. In
this case

IS) = ISO) + [exp((PIP,)z) - hIP,) (P1ISo)

+ [exp((P 2IP 2)z) - h1IP2 ) (P 21SO). (39)

What emerges is now a Stokes beam, with one piece tem-
porally correlated with the first pump (with a gain propor-
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tional to the first pump's intensity) and the other temporally
correlated to the second pump (with a gain proportional to
the second pump's intensity).

The conditions for the temporal coherence of the multi-
mode crossed beams are the following:

(1) The lasers originate in the same master oscillator,

(2) LAk << 1, (40)

(3) DOAk << 1, (41)

where L is the path mismatch and Ak is the pump's band-
width.

Temporal coherence also obtains in the case of single-
longitudinal-mode lasers. To obtain multibeam gain in a
beam-combining experiment with two different lasers, rath-
er than two laser beams originating from the same master
oscillator, very-narrow-band lasers must be used, since for
typical excimer lasers the mode spacings are of the order of
100 MHz.

Finally, we address the problem of forward scattering
when the angle between the beams is less than the diffrac-
tion angle. In this case the spacing between grating layers
exceeds the beam width, and the beam may be taken to be
collinear. Hence we must solve Eq. (15) by keeping all four
terms. Taking and Q to be equal to zero, the exponentials
in Eq. (15) vanish, and we obtain

daIS) = ( IPn))( (Pml)IS). (42)

Assuming now lack of temporal coherence, we obtain by
formal integration

Is) = IsO) + I IPn) (PmISO))( (PiIPj))n,m=l1j 
X [exp(z E (PIP)) -I (43)

so that in this case (collinear pumps) the multibeam gain is
obtained in the absence of temporal coherence.

There is, however, a price to be paid in beam quality of the
amplified beams if the pump beams have different trans-
verse phase fronts. This can be seen by noting that since for
the mth beam we may write

IPm) = IPmo)exp[im(k)], (44)

where m(x) represents the phase front of the mth beam,
there is no cancellation of pump phases on the rhs of Eq.
(42). Cancellation obtains only if the transverse phase
fronts of the different pump beams are identical. This situ-
ation is to be contrasted with the finite-crossing-angle case
(above the grating angle) in which the crossed beams could
have different phase fronts and still preserve the Stokes
beam quality.

SUMMARY AND CONCLUSIONS

We may most conveniently summarize our results by angles
of the crossed beams.

(1) Collinear ( < X/D). In this case the multibeam gain
is attained even if the pumps are incoherent. If they are
coherent, the beams alternatingly reinforce and cancel along
the propagation direction. The beam quality is not pre-
served unless the phase fronts of the interacting beams are
the same.

(2) The Grating Regime ( > > /D). Wide-angle
scattering occurs in this regime. (The amount of scattering
depends on the temporal correlation among the pumps and
on the temporal correlation between the Stokes and the
pumps.) Forward scattering also occurs with single-pump
gain if the pump beams are incoherent; otherwise it occurs
with multipump gain.

(3) The Forward-Scattering Regime (03, 2 > > 1).
There is no wide-angle scattering. Multibeam gain obtains
if the pumps are temporally coherent; otherwise one has
single-pump gain. Beam quality is preserved even if the
pumps have different phase fronts.

(4) Single-Beam Dropoff ( > 02 and/or 0 > 03). If 0 > 2
there is a dropoff in beam quality. If > 03 there is a dropoff
in gain. Both of these effects, however, also occur in the case
of a single pump with a misaligned Stokes.
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