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S.1 Design













We initially design the pitch  and radius  of the Dirac-cone metamaterial using an analytical model for the effective constitutive parameters of a square array of 2D magnetodielectric cylinders23.  Based on this result and the given values of height of the silicon pillars, the SU-8 layer thickness, and the gold layer thickness, we optimize  and  based on a 3D FDTD model of the presented structure (Fig. 1a). We choose  and  as the optimization parameters since the existence of the Dirac-cone is most sensitive to these two geometric parameters. The figure of merit of this optimization is the absolute value of the effective index , which is retrieved from the simulated reflection and transmission coefficients, at the design wavelength, . This figure of merit is chosen since we want to design a Dirac-cone metamaterial with zero real index and low loss, which can be characterized by the imaginary part of the refractive index at the design wavelength. As shown in Fig. S1a and b, the minimum values of the real and imaginary parts of  appear along the two different diagonals of the 2D parameter space, and cross each other around the center.  Hence, the minimum value of  () appears around the center of the 2D parameter space at  and  (Fig. S1c). These values combined with other geometric parameters in Fig. 1a are used as the target parameters of our nanofabrication.
S.2 Homogenization


We conduct a systematic homogenization analysis to verify that it is proper to treat the on-chip Dirac-cone metamaterial macroscopically as a homogeneous bulk medium with effective constitutive parameters in the in-plane direction near the -point. In this analysis, we consider the homogenization criterion and locality conditions. Furthermore, we compare our Dirac-cone metamaterial with its corresponding homogenized model. Since our structure (Fig. 1a) is only periodic in the in-plane direction, this analysis is restricted to in-plane propagation. In this paper, we assume harmonic time dependence of .
A. Homogenization criterion




The general homogenization criterion of metamaterials requires that , where  is the lattice constant (Fig. 1a),  and  are the free-space wavenumber and the effective wavenumber in the metamaterial, respectively24. Based on this criterion, we analyze the homogenization of our metamaterial within the array and at the boundary, separately.






Within the array, the metamaterial can be treated as an infinite array, which can be analyzed by studying its photonic band structure. Considering that the Dirac cone appears near the -point (Fig. 2a) where the effective wavenumber k approaches zero, this metamaterial meets the criterion  in the vicinity of the Dirac point. To quantitatively estimate the region, in which the effective constitutive parameters are valid, we compare band structures obtained using two different methods: a macroscopic method treating the metamaterial as a homogeneous bulk medium (using the retrieved effective index  and the expression , and a microscopic method regarding the metamaterial as an infinite array (FDTD). As shown in Fig. S2, the two band structures agree well in the range  for the linear band below the Dirac point and in the range  for the linear band above the Dirac point. Thus, it is reasonable to treat the infinite array as a homogeneous bulk medium with effective constitutive parameters within these regions. Further, because our metamaterial is almost isotropic near the Dirac-point (Fig. 2d), this conclusion is valid for all propagation directions near the Dirac-point in the Brillouin zone.


Because the lattice constant of our Dirac-cone metamaterial is not much smaller than the free-space wavelength (), the homogenization criterion  is not met and we cannot define the physical boundary of this metamaterial unambiguously. Instead, there is a transition layer in which the local effective constitutive parameters vary from the values of the infinite array to the values of the background medium surrounding the metamaterial25. To investigate this transition layer quantitatively, we use 3D FDTD to compare the phase of the electric field at the interface of our Dirac-cone metamaterial with that of a corresponding bulk zero-index medium with retrieved constitutive parameters (Fig. 2e). Here, we analyze the phase instead of the local effective constitutive parameters due to following reasons: first, phase can directly reflect the variation in the local constitutive parameters; second, it’s challenging to extract the local effective constitutive parameters at the interface. To observe the change in the phase near the boundary clearly, we position the SU-8 background medium, metamaterial, and its homogenized model between gold layers (Fig. S3a). This guarantees an efficient coupling between the TM mode in the input waveguide and that in the metamaterial/homogenized model. Within the metamaterial, we only consider the phase of the electric field in-between the pillars since the local effective constitutive parameters are a consequence of the interaction of the electromagnetic fields scattered by the pillars in the array. As shown in Fig. S3b and c, the behavior of the phase at the interface of the metamaterial is very similar to that of the homogenized model. Fig. S3d illustrates this agreement more clearly: the phase advance is essentially linear along the propagation direction in the positive-index input waveguide. However, we observe uniform phase within the metamaterial/homogenized-model due to their zero indices. The transition between these two behaviors happens very sharply at the interface, indicating a jump discontinuity in the local constitutive parameters at the boundary of the metamaterial. In other words, similar to its homogenized model, our metamaterial also has a well-defined boundary in terms of local constitutive parameters even though its lattice constant is not much smaller than the free-space wavelength. The minor phase oscillation in the input waveguide is due to a standing wave consisting of the incident traveling wave and the wave reflected by the metamaterial or its homogenized model, and the phase oscillation in the metamaterial regime is due to the interaction of the electromagnetic fields scattered by the pillars in the array.



To further investigate the homogenization at the boundary, we simulate the angle-dependent transmission of both our Dirac-cone metamaterial and its homogenized model. We calculate the transmission through a metamaterial slab with a thickness of five unit cells (along the propagation direction) and an identically sized bulk medium (Fig. 1a). Fig. S4 shows the transmission at incident angles ranging from  (normal incidence) to  at the design wavelength of 1590 nm. This range was selected to avoid artifacts in transmission for angles of incidence greater than .
We observe high transmission near normal incidence for both cases, indicating strong angular selectivity and good agreement between the metamaterial and homogenized model. Considering the critical angle of a material with an index of zero, transmission at only normal incidence is expected. Extraneous transmission at higher angles of incidence, as observed in the case of the metamaterial, can be attributed to incident light coupling into the longitudinal magnetic dipole mode crossing the Dirac-point as a quadratic band (Fig. 2b). This mode can only be excited when the incident light with non-zero k-components parallel to the interface17. This extraneous transmission is reduced at wavelengths less than the Dirac-point wavelength of 1590 nm, as the longitudinal mode does not exist in this regime (Fig. S4a, Fig. 2b). We also observe a decrease in angular selectivity for both the metamaterial and bulk medium at lower wavelengths since the indices of both cases are deviating from zero in this regime.
B. Locality conditions




Effective constitutive parameters of metamaterials have to satisfy the conditions of locality: passivity, causality, isotropy, and absence of radiation loss25. Most metamaterials cannot meet the fourth condition since the size of the resonator is not much smaller than the wavelength so that there is scattering from single inclusions. Fig. S5 shows that the medium is passive, since  and  simultaneously near the Dirac-point wavelength. As shown in Fig. 2e, the fact that both  and  near the Dirac-point wavelength indicates that the medium satisfies the basic causality conditions represented by the Kramers-Kronig relations26. The isotropy of our metamaterial in the vicinity of the Dirac point has already been verified in Fig. 2d. Similar to most metamaterials, our metamaterial does not satisfy the fourth condition since its inclusion size is not much smaller than the free-space wavelength so that the scattering loss cannot be ignored.
C. Comparison of Dirac-cone metamaterial prism with its homogenized model


We compare the FDTD simulations of the prism composed of the Dirac-cone metamaterial (Fig. 1a) with its corresponding homogenized model using the retrieved effective constitutive parameters at the designed zero-index wavelength 1590 nm (Fig. 2e). As shown in Fig. S6, both prisms show good transmission at the input interface due to their finite characteristic impedance ~1.47. Within both prisms, the electric fields exhibit almost uniform distribution due to the near-zero real indices of the prisms . The fields decay along the propagation direction, which is normal to the input interface, due to the losses of the prisms . In the SU-8 slab waveguide region, both prisms show the refracted beam normal to the output interface. Unlike the metamaterial, the homogenized-model prism shows a refracted beam without any diffraction since there is no diffraction effect at the interface between the homogenized model and the SU-8 slab waveguide.
S.3 Robustness against effects of parameter variations





Since the existence of a Dirac cone is sensitive to the geometric parameters of the structure, it is important to investigate the robustness of our design with regards to the effects induced by parameter variations. Here, we study the effects of variations in the pillar radius  (Fig. 1a) since this parameter represents the largest source of disorder among all the geometric parameters. We model the effect of disorder on the transmission through the structure assuming a Gaussian distribution with a mean radius  and standard deviation . Using 3D FDTD simulations, we test the transmission through a metamaterial slab (Fig. 1a) with 8 unit cells in the direction of propagation, which is the number of periods in our fabricated prism sample (Fig. 1b, c). As depicted in Fig. S7, this metamaterial shows transmission over 10% at 1590 nm until the deviation of radius is as large as , which is within the fabrication tolerance we can achieve ().
S.4 Dirac cones of metamaterials with large SU-8 thickness
Here we analyze the effect of variations in SU-8 thickness on the existence of a Dirac cone, especially for thicknesses much larger than height of the silicon pillars (Fig. 1a).







The Dirac-cone is a consequence of the degeneracy of an electric monopole mode and a transverse magnetic dipole mode at the  point, so any variation in the wavelengths of these modes at the  point would adversely affect the existence of the Dirac-cone.  Fig. S8a shows the  point wavelengths of these modes for various SU-8 thicknesses. As the SU-8 thickness increases from 500 nm to 2 μm, the electric monopole mode at the  point remains nearly unchanged around 1590 nm while there are four different magnetic dipole modes at the  point, . Each of these dipole modes intersects with the electric monopole mode at a particular SU-8 thickness, which indicates the existence of a Dirac-cone. To confirm this fact, we calculated the band structure near the  point with SU-8 thicknesses corresponding to each of those intersections (Fig. S8b). Results clearly show the existence of Dirac-cones when SU-8 thickness equals to 550 nm, 975 nm, 1475 nm, and 1975 nm, respectively.

Although our structure shows Dirac-cones with different values of SU-8 thickness, we still need to verify that those Dirac-cones are due to the silicon pillars rather than metallic waveguides, especially when the SU-8 thickness is much larger than the height of the pillars. We analyze the mode profiles of the two modes forming the Dirac-cone by observing the spatial distribution of the out-of-plane electric field component  in a single unit cell. As depicted in Fig. S9, for all SU-8 thickness showing Dirac-cones, the fields of both the electric monopole mode and the transverse magnetic dipole mode are confined within the pillar region. This confirms that the Dirac-cones corresponding to structures with different SU-8 thicknesses (Fig. S8) are all due to the interaction between the electromagnetic wave and the array of pillars which form the patterned metamaterial, rather than the metallic waveguide.

Our fabricated Dirac-cone metamaterial prism (Fig. 1b, c) has an SU-8 thickness around 1500 nm, instead of the initially designed value of 595 nm (Fig. 1a). This thickness corresponds to intersection C in Fig. S8, between the third order transverse magnetic dipole mode  and the electric monopole mode m.
S.5 Diffraction









Because the period of the pillar array (690 nm) is not much smaller than the effective wavelength in the SU-8 slab waveguide (1033 nm at the design wavelength of 1590 nm), we have to consider the effects of diffraction at the interface between the prism and the SU-8 slab waveguide27. This diffraction is described by the grating equation, , where  is the spacing between neighboring silicon pillars along the interface (, where  is the period of the silicon pillar arrays as shown in Fig. 1a),  is the angle between the diffracted ray and the surface normal, m is the order of the diffracted mode, and  and  are the effective wavelengths in the prism and the SU-8 slab waveguide, respectively. In this case, the output from the prism includes both a zeroth-order beam, which is the refracted beam obeying Snell’s law, and the first order diffraction at an angle  (Fig. 3a, b). When measuring the refractive index of the metamaterial we consider only the zeroth-order beam, although we do observe both first order diffraction beams as well. In practical integrated-photonics applications, the diffractions can be suppressed by aligning the output facet in the  orientation, by decreasing the mode indices of the input and output waveguides, or by adiabatically tapering down the pillar spacing at the boundaries.
S.6 Modes in SU-8 slab waveguide
In Fig. S10a (Fig. 3b), we observe a low-frequency oscillating pattern in the SU-8 slab waveguide at the prism output. We claim that this is due to the interference between the multiple propagating TM modes in the SU-8 planar waveguide. We prove that this is the origin of the low-frequency oscillating pattern using two methods.


First, we solve Helmholtz equation for an asymmetric slab waveguide28. In the case of a 2-μm-thick SU-8 slab on an SiO2 substrate in air, the solution at  yields a pair of TM modes with effective indices 1.5372 and 1.4526. These indices correspond to effective wavelengths of 1.021 and 1.080 , respectively. We can combine two beams to obtain a beat-wavelength of:


This is precisely the spatial extent of the oscillating patterns shown in Fig. S10a.


Second, we plot the electric field of the refracted beam along the propagation direction (Fig. S10c), as well as its Fourier transform (Fig. S10d), to reveal the dominant spatial frequencies. Two peaks are apparent at the spatial frequencies of 0.9239 and 0.9828 , corresponding to effective wavelengths of 1.082 and 1.018 . These wavelengths match the results found in the first method for the two propagating TM modes in the planar waveguide.
Finally, we simulate an identical prism structure followed by a thinner SU-8 planar waveguide, which only supports one propagating TM mode. Numerical calculations show that the low-frequency oscillating pattern has been suppressed (Fig. S10b), confirming our claim that the oscillation is due to the interference between the multiple propagating TM modes.
S.7 Prism index extraction and error estimation

We extract the prism index from InGaAs images of refraction through a zero-index metamaterial prism. Figs. 1b and S11a show a silicon waveguide feeding into a triangular prism, which couples to a large SU-8 slab waveguide with a radius of 125 . Light enters through the silicon waveguide and refracts through the prism into the SU-8 slab waveguide. This beam scatters at the edge of the SU-8 slab waveguide, and is imaged from above using an InGaAs camera (Fig. S11b). Images are taken for a range of input wavelengths between 1480 nm and 1680 nm. In addition to refraction images, we use reference images to identify alignment marks, which are used to locate and orient the prism.
We first determine the position of the alignment marks in the microscope images using a 2D Gaussian fit. This allows us to orient the prism and map pixels near the edge to polar coordinates. The refracted beam is then located using a polar 2D Gaussian fit to extract the refracted angle. This refracted angle is used to calculate the prism index using Snell’s law and the effective index of the SU-8 slab waveguide. The measurement error is propagated throughout the calculation and includes the effects of camera pixel size, resolution, and fit uncertainty due to variance in the data.
A. Alignment marks






There are two alignment marks placed at  relative to the surface normal of the prism output, and 139.2  from the center of the prism (Fig. S11a). They are both 3  wide, and show up brightly in the images as shown in Fig. S12a. By identifying the locations of each alignment mark we can determine the SU-8 slab waveguide’s radius , rotation offset , and prism location from which we define the origin :








where the measured values  and  are the coordinates of the two alignment marks.
To determine the center of the alignment marks, we fit the intensity profile of each mark to a 2D Gaussian function:










The fitting parameters are amplitude , -center position , -center position , width , and intensity offset . We use a nonlinear least-squares optimization method to minimize the residuals of the data (Fig. S12b). This solution also includes an estimate of the covariance of the fitting parameters.




To ensure accurate fits for the data, we consider only the pixels in the vicinity of the alignment marks. Too narrow a window would reduce the fit quality, and too wide a window would include other peaks. We use a 20-pixel-wide window, which is significantly wider than the alignment mark ( px), but small enough to exclude extraneous features. The window is centered at the maximum intensity for each alignment mark. From the fit, we calculate the SU-8 slab waveguide radius , offset angle  and the origin position .
B. Refraction angle
From the measured positions of the alignment marks, we can define the edge of the SU-8 slab waveguide. The refracted beam propagating along the SU-8 slab waveguide will be scattered from this edge, appearing as a bright band. Since the edge is curved, it is convenient to map the positions of the pixels to polar coordinates centered at the prism (Fig. S13b). We can then locate the center of the refracted beam using the same method as for the alignment marks.

Pixels are mapped to polar coordinates  according to the alignment mark measurements:


In polar coordinates, we fit the beam intensity profile to another 2D Gaussian, this time allowing for two peaks to account for the sometimes-irregular beam profile:


The refracted angle is measured using the stronger of the two peaks. Fig. S13d shows an example of the 2D Gaussian fit for an excitation wavelength of 1590 nm. We repeat this measurement for several wavelengths to track the refracted beam.
C. Prism index

The prism index is calculated using the measured refraction angle. Light enters the prism normal to the input surface, and refracts into the SU-8 slab waveguide at an incident angle of. From Snell’s law:


The extracted index shows a continuous transition from positive to negative index with increasing wavelength (Fig. 3d). The zero-crossing is centered on 1570 nm, where the index dispersion is linear. The error bars in this plot represent the uncertainty in the measured index, assuming a confidence level of 95%29. They include the effects of the image size, pixel size, resolution, and propagated errors from each measurement stage. Given the calculated uncertainty in the measurement, the observed zero index “bandgap”, in which the real index is equal to zero with 95% confidence, is at most 49 nm wide.
S.8 Change in Dirac cone with different pillar radii


To verify that the measured zero index is due to the existence of a Dirac cone, we simulate and fabricate prisms with different pillar radii that are both larger and smaller than that of the prism in Fig. 3, . For these prisms, we compare the band structures as well as the measured and simulated indices to the ideal case. The simulated band structures only exhibit a Dirac-cone for the ideal radius ; otherwise, a bandgap appears between the electric monopole mode and the transverse magnetic dipole modes (Fig. S14a, c, e). When the radius deviates from the ideal case, the real part of the index is fixed at zero over a range of wavelengths between the positive and negative index regimes, indicating a bandgap. From an effective medium perspective, changing the pillar radius breaks the degeneracy of the magnetic and electric plasma frequencies, resulting in a frequency range in which either the effective permittivity or effective permeability is negative, but not both.



The dipole modes at the  point in the band structure for smaller  are blueshifted when compared with the band structure of the metamaterial with the ideal radius, opening a bandgap in the wavelengths ranging from 1502 to 1543 nm (Fig. S14a). This fact is confirmed by the measured and simulated  as shown in Fig. S14b: the zero-crossing of the index is blueshifted. Considering the error bars, the measured bandgap is at most 25 nm wide, centered at 1510.5 nm (from 1498 to 1523 nm). The measured bandgap is 49% narrower than that of the prism with ideal radius, contrary to our theoretical prediction. This anomalous behavior indicates the persistence of a Dirac cone at shorter wavelengths. Because there is no refracted beam for wavelengths larger than 1604 nm, the measured and simulated indices are not shown in this regime.



The band structure for a metamaterial with larger  shows dipole modes at the  point that are redshifted, so as to open a bandgap in the wavelength regime of 1570 to 1610 nm (Fig. S14e). This fact is clearly verified by the measured and simulated  shown in Fig. S14f: the zero-crossing of the index is redshifted. Considering the error bars, the measured bandgap is at most 95 nm, centered at 1567.5 nm (from 1520 to 1615 nm), which is 94% wider than that of the prism with ideal radius.


These results confirm that the experimentally measured zero index of our metamaterial with the ideal radius of  corresponds to a Dirac-cone at the  point, rather than a bandgap.
S.9 Control experiment




To validate the results of the metamaterial prism index measurement, we perform a control measurement on the same measurement setup (Fig. 1b, c) without the prism. In this control device, light from the input silicon waveguide couples directly into free space () before entering the SU-8 slab waveguide at an incident angle of  (Fig. S15a). Using the same experimental and simulation methods as the prism measurement, we observe a refracted beam in the far field at an angle of  (Fig. S15b). Based on the Snell’s law, this angle corresponds to refraction from a material with index , which is very close to the index of air. Fig. S15c shows the measured and simulated indices of the control experiment, which agree with each other well throughout the measurement wavelength range.
These results confirm that the measured index shown in Fig. 3 corresponds to the effective index of the metamaterial prism, instead of the artifact of the measurement setup.









Fig.S1. Effective index  of the presented Dirac-cone metamaterial as a function of pitch  and radius  (Fig. 1a) at the design wavelength, : (a) Real ; (b) Imaginary ; (c) Absolute value of .



Fig.S2. Comparison of band structures of the presented metamaterial (Fig. 1a) computed by determining the angular frequencies as a function of wave vector for all the Bloch modes (blue dot), and by  with the retrieved effective index  (red curve).




Fig.S3. The phase of the electric field within a Dirac-cone metamaterial compared with that of a homogenized zero-index medium near the interface with an input waveguide. (a): Cross-sectional views of the Dirac-cone metamaterial (top, parameters are as in Fig. 1a) and its homogenized model (bottom). The input waveguide consists of SU-8 clad by gold films, and the homogenized zero-index medium is defined by the retrieved constitutive parameters at 1590 nm in Fig. 2e. (b): Phase of  in the range of  of the Dirac-cone metamaterial (top) and its homogenized model (bottom) in a plane parallel to the substrate. The phase corresponds to the electric field perpendicular to the plane of propagation,  at a wavelength of 1590 nm. The dashed lines indicate the interface (the left edge of the metamaterial unit-cell or the boundary of the homogenized model) and pillar positions within the Dirac-cone metamaterial. (c): Same phase as in (b) but unwrapped to show constant phase advance in the SU-8 region. (d): Comparison of the unwrapped phase along the propagation direction in the Dirac-cone metamaterial and the corresponding homogenized model. The phase is sampled along the top or bottom edge of the simulation region in (c).

Fig.S4. Angle-dependent transmission of (a) the Dirac-cone metamaterial and (b) its homogenized model. Transmission is normalized to its maximum value.

Fig.S5. Imaginary parts of the effective relative permittivity and permeability of the metamaterial retrieved from numerically calculated reflection and transmission coefficients.


Fig.S6. Simulated  in the prism and SU-8 slab waveguide region at 1590 nm. Comparison of (a): a metamaterial prism (parameters are as in Fig. 1a), and (b): a prism composed of a homogenized model based on the retrieved constitutive parameters from Fig. 2e.

Fig.S7. Effect of disorder in pillar radius on the transmission through 8 unit cells.






Fig.S8. Effect of variation in SU-8 thickness  on modes forming the Dirac-cone. (a): Wavelengths of the electric monopole mode (m: red curve) and the transverse magnetic dipole modes (: blue curve) at  point for various . (b): Band structures corresponding to the four intersections (A, B, C, D) of the electric monopole mode and the four different transverse magnetic dipole modes ( in (a)).














Fig.S9. Simulated mode profiles in one unit-cell of metamaterials with different SU-8 thicknesses  at the Dirac-point wavelength (Fig. S8b). (a) -plane and -plane  corresponding to the electric monopole mode of the metamaterial with . (b) -plane and -plane  corresponding to the transverse magnetic dipole mode of the metamaterial with . (c-e) -plane  corresponding to the electric monopole mode (left) and transverse magnetic dipole mode (right) of the metamaterial with  and , respectively.




Fig.S10. Simulated  and interference patterns in the spatial and spectral domains. Comparison of the (a) simulated  for our fabricated prism structure when coupled to a 2-μm-thick SU-8 slab waveguide and (b) our fabricated prism structure when coupled to a 0.8-μm-thick SU-8 slab waveguide. (c)  sampled in a plane perpendicular to the propagation plane along the refracted beam and (d) its corresponding Fourier transform.

Fig.S11. Prism-based measurement configuration. (a) Schematic and (b) microscope image of the measurement configuration. In (a), a silicon waveguide directs light into a metamaterial prism, which couples to an SU-8 slab waveguide. A separate SU-8 waveguide, outside of the SU-8 slab waveguide, is used to illuminate alignment marks. In (b), white dashed lines indicate the position of the silicon waveguide and the SU-8 slab waveguide.

Fig.S12. Location of illuminated alignment marks. (a) InGaAs image of an alignment mark. (b) 2D Gaussian fit of the measured intensity. Red dots: measured intensities; colored surface: Gaussian surface fit. In (b), we fit the measured intensity values to a 2D Gaussian model using a nonlinear least-squares algorithm.

Fig.S13. Extracting refraction angle from InGaAs images. (a) Measured intensity values in the Cartesian coordinate. (b) Measured intensity values mapped to the polar coordinate. From (a) to (b), the curved edge of the SU-8 slab waveguide is transformed to a horizontal line. (c) Magnified view of the refracted beam region. (d) 2D Gaussian fit of the measured intensity in (c). Red dots: measured intensities; colored surface: Gaussian surface fit. In (d), we fit the measured intensity values to a 2D Gaussian model to extract the refracted angle.







Fig.S14. Change in photonic band structure and extracted  for different pillar radii. (a, c, e): Band structures of metamaterials with pillar radius 167.5, 190, and 210.5 nm, respectively. The electric monopole mode is indicated by red dots, and the magnetic dipole modes are indicated by blue dots. Insets show  profiles corresponding to each band at the  point. (b, d, f): Effective indices  extracted from refractions through prisms with 167.5, 190, and 210.5 nm, respectively. Simulations are shown by red curves, and measured results are shown by blue dots with error bars.

Fig.S15. Optical image, simulation and experimental results of the control experiment. (a) Optical image of the control device. This device is the same as the measurement setup in Fig. 1b, c except for the absence of the metamaterial prism. (b): Simulated (left) and measured (right) far-field patterns. (c) Measured and simulated effective index of the control experiment. The blue dots indicate the measured refractive index, with error bars representing the uncertainties in the measurement. The measurement agrees well with the simulated effective index (red line).
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