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A couple of months ago we demonstrated on-chip zero index using etched Silicon Pillars embedded in an Su-8 matrix and clad with gold, recently we’ve been very interested in showing it’s applications
Integrated = on chip
Super coupler = broad definition of something that can connect any port A to port B
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What is a zero-refractive index material? 


Dense both means smaller and subwavelength tunnels
Add top gold mirror
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What is a zero-refractive index material? 
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High phase velocity, infinite wavelength, zero k vector, and zero spatial phase change  
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Dense both means smaller and subwavelength tunnels
Add top gold mirror
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Zero-index applications

N. Engheta, Science, vol. 340, 2013

H. Suchowski et al, Science, vol. 342, 2013

X.Q. Huang et al, Nature Materials, vol. 10, 2011
Supercoupling
Nonlinear phase matching
Cloaking

Beam steering
M. Memarian et al, Nature Communications, vol. 6, 2015


Dense both means smaller and subwavelength tunnels
Add top gold mirror
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Index of refraction:
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Basis of zero-index
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Basis of zero-index



double zero



0
0


Impedance:
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Double zero produces finite impedance
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Basis of zero-index



double zero
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Impedance:




Double zero produces finite impedance


Suitable for integration
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Mie theory resolves the scattering of a plane wave by a particle in a series of modes.

We can tune both the electric and magnetic response.
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Designing a zero index metamaterial
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Mie theory resolves the scattering of a plane wave by a particle in a series of modes.

This method can be used to tune both the electric and magnetic response
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Designing a zero index metamaterial
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Add dot into wavefields
Degeneracy means there is more than one mode at a given frequency
----- Meeting Notes (6/4/15 14:48) -----
flip E pole

Mie theory gives entire multipole expansion, do a toy model instead of the real thing

For smallish particles, first two dominate

Opportunity to discuss size
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First Generation Platform
Y. Li et al., Nature Photonics, vol 9, no. 11, 2015
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How do we make our zero-index material CMOS-compatible?


Dense both means smaller and subwavelength tunnels
Add top gold mirror
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Involve fewer fabrication steps 
Eliminate metals 
Lower losses 
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SECOND GENERATION PLATFORM
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Designing a platform for mass adoption
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Dense both means smaller and subwavelength tunnels
Add top gold mirror
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Designing a platform for mass adoption

500nm
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Add dot into wavefields
Degeneracy means there is more than one mode at a given frequency
----- Meeting Notes (6/4/15 14:48) -----
flip E pole

Mie theory gives entire multipole expansion, do a toy model instead of the real thing

For smallish particles, first two dominate

Opportunity to discuss size
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Designing a platform for mass adoption
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Add dot into wavefields
Degeneracy means there is more than one mode at a given frequency
----- Meeting Notes (6/4/15 14:48) -----
flip E pole

Mie theory gives entire multipole expansion, do a toy model instead of the real thing

For smallish particles, first two dominate

Opportunity to discuss size
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Designing a platform for mass adoption
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Add dot into wavefields
Degeneracy means there is more than one mode at a given frequency
----- Meeting Notes (6/4/15 14:48) -----
flip E pole

Mie theory gives entire multipole expansion, do a toy model instead of the real thing

For smallish particles, first two dominate

Opportunity to discuss size
16



17
17


Designing a platform for mass adoption

Single electron beam lithography step
Standardized material platform (220-nm Silicon-on-Insulator)
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Dense both means smaller and subwavelength tunnels
----- Meeting Notes (6/4/15 14:48) -----
pillars have mie resonances

airholes is a variation but no easy approximation (mie resonances is no longer a starting point)

need dirac cone figures

transition from infinite to finite pillar

net slide is dirac cones
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Dense both means smaller and subwavelength tunnels
----- Meeting Notes (6/4/15 14:48) -----
pillars have mie resonances

airholes is a variation but no easy approximation (mie resonances is no longer a starting point)

need dirac cone figures

transition from infinite to finite pillar

net slide is dirac cones
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Designing a platform for mass adoption
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Dense both means smaller and subwavelength tunnels
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Snell’s Law:








We treat the interior as an infinite array and calculate the bandstructure from the array’s effective index

----- Meeting Notes (2/3/15 14:24) -----
add dispersion diagram showing 1590/1570 diff
----- Meeting Notes (6/4/15 14:48) -----
take one equation out?
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Snell’s Law:





If the refracted angle is normal to the prism output, the index of the prism is zero
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We treat the interior as an infinite array and calculate the bandstructure from the array’s effective index

----- Meeting Notes (2/3/15 14:24) -----
add dispersion diagram showing 1590/1570 diff
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Dense both means smaller and subwavelength tunnels
----- Meeting Notes (6/4/15 14:48) -----
pillars have mie resonances
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need dirac cone figures

transition from infinite to finite pillar

net slide is dirac cones
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λ = 1630nm


Dense both means smaller and subwavelength tunnels
----- Meeting Notes (6/4/15 14:48) -----
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λ = 1630nm



Dense both means smaller and subwavelength tunnels
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λ = 1630nm








Experiment
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Experiment
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Experiment



Dense both means smaller and subwavelength tunnels
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net slide is dirac cones
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Simulation
Experiment


Dense both means smaller and subwavelength tunnels
----- Meeting Notes (6/4/15 14:48) -----
pillars have mie resonances

airholes is a variation but no easy approximation (mie resonances is no longer a starting point)

need dirac cone figures

transition from infinite to finite pillar

net slide is dirac cones
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We have unambiguously demonstrated a zero refractive index metamaterial that is compatible with silicon photonics platforms.
This platform offers a robust method of exploring the applications of zero index materials. 


Concluding thoughts

To download these slides, please visit mazur.harvard.edu 


Dense both means smaller and subwavelength tunnels
----- Meeting Notes (6/4/15 14:48) -----
pillars have mie resonances

airholes is a variation but no easy approximation (mie resonances is no longer a starting point)

need dirac cone figures

transition from infinite to finite pillar

net slide is dirac cones
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Thank you!
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Designing a platform for mass adoption
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+


Add dot into wavefields
Degeneracy means there is more than one mode at a given frequency
----- Meeting Notes (6/4/15 14:48) -----
flip E pole

Mie theory gives entire multipole expansion, do a toy model instead of the real thing

For smallish particles, first two dominate

Opportunity to discuss size
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