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Large-scale audiovisual data that measure group learning are time consuming to collect and analyze.
As an initial step towards scaling qualitative classroom observation, we qualitatively coded classroom
video using an established coding scheme with and without its audio cues. We find that interrater reliability
is as high when using visual data only—without audio—as when using both visual and audio data to code.
Also, interrater reliability is high when comparing use of visual and audio data to visual-only data. We see a
small bias to code interactions as group discussion when visual and audio data are used compared with
video-only data. This work establishes that meaningful educational observation can be made through visual
information alone. Further, it suggests that after initial work to create a coding scheme and validate it in
each environment, computer-automated visual coding could drastically increase the breadth of qualitative
studies and allow for meaningful educational analysis on a far greater scale.
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I. INTRODUCTION

Classroom observation is an important means of meas-
uring learning behaviors that students and instructors may
not accurately self-report in surveys. Analysis of video
collected during an activity allows for measure of in-the-
moment behavioral response to the classroom environment
without bias from retrospection, which can affect recall of
emotion [1,2], focus [3], and how time was spent [4,5].
Behavioral data are also important because, unlike high-
stakes national and state assessments, both teachers and
administrators rate observation as a reliable measure of
student learning [6].
Analysis of classroom observations can be broad or

detailed in scope, and generally includes conversation along
with audible and visible nonverbal cues. Often, classroom
observation studies utilize analysis of conversation to
measure aspects such as the kinds of explanations given
during a group discussion [7,8,9]. Other observational
studies use broader measurements such as distribution of
time for a given curricular material or the level of student

participation [10,11,12]. These broad measurements are
important to determine how curricular materials and instruc-
tor implementation affect the use of time in student group
learning. Both levels of observational study—detailed con-
versational analysis and broad measurements such as
participation level and time use—can providemeasurements
that are meaningful to educational researchers and practi-
tioners in answering a variety of research questions.
A challenge to both levels of observation research is

scalability. With current techniques, it is difficult to balance
between two competing needs: the need to do close
analysis of a faithful record of the classroom (i.e., video)
and the need to reliably code something meaningful
quickly. The time barrier of both collecting student-specific
audio data and reliably coding audio-visual data restricts
the scale of most observation research to small sample
sizes, long time requirements for analysis, or expansive
coding teams.
Greater scalability would benefit both small and

large-classroom observation studies. In small classrooms,
scalable techniques for reliable analysis would extend
observation capabilities to larger numbers of small-group
interactions and over longer time scales. In large class-
rooms, scalable observation measurement would make it
possible to code not only large numbers of students, but
dynamic interactions in which student groups change over
the course of a single class period. This situation occurs in
large-enrollment university courses using techniques such
as Peer Instruction. In a class using Peer Instruction,
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students are asked to discuss a series of conceptual
questions with neighboring students. Students’ discussion
partners can vary not only between questions, but within a
single question a student may take part in discussions with
more than one group of students. Enrollment in these
classes can reach close to 1000 students. In such con-
ditions, intelligible audio recording of student discussions
is logistically difficult not only to collect but also to identify
with specific students.
As an initial step towards more scalable classroom group

behavior measurement, we use coding protocols, video
data, and a previously validated behavioral coding scheme
that links students’ conversation, nonverbal audio cues, and
camera-visible student behaviors to their epistemological
framing [13]. In this context, epistemological framing
describes students’ goals in a learning activity, and the
knowledge and reasoning required to achieve those goals
[13,14]. For example, epistemology discerns whether a
student views the activity as a chance to confront con-
ceptual difficulties of the material, or as an exercise of
filling in answers on a worksheet. Epistemology is an
important educational aspect because how students view
the purpose of an activity mediates their learning [14].
Because of this role, determining students’ epistemology
for a learning activity is relevant to curriculum designers,
instructors, and classroom researchers. While we base our
analysis on work that has been validated to code for
epistemology, the analysis in this paper is not intended
to contribute to research on epistemology specifically.
Rather our interest is in coding methods, and our methods
could be applied to validated coding schemes linked to
other theoretical constructs distinct from epistemology.
Unlike previous uses of this epistemological coding

scheme, which used “students’ behavior, along with the
substance of their speech,” we code by using only visual
data and compare this to coding with both visual and audio
data [13]. Our interest is not in visual markers as an end, but
as a proxy for the behavioral codes previously developed.
The goal of this research is to present a proof of principle
that educationally meaningful assessment of group learning
is possible through analysis of visual information alone.
Our coders first code by watching the video without

listening to the audio (V mode), then again by watching the
video with audio (AV mode). Different coders’ results are
compared in three ways: V vs V mode, AV vs AV mode,
and V vs AV modes. To determine if systematic differences
exist between V and AV coding modes, we compare the
results of all coders one time interval at a time.
Our results show that interrater reliability is as high when

coders watch video without sound as when they watch it
with sound. This is true even when comparing coders using
both audio and visual data to coders using visual data only;
87% of time intervals qualify as agreement between V and
AV modes. In short, visual signals alone are sufficient to
reproduce the coding of these behavioral frames.

In the few areas with lower agreement between Vand AV
coding modes, we find slight differences in the codes
assigned in each mode. Visual-only coders (V mode) have a
slight inclination towards less interactive codes (e.g., focus
on worksheet and listening to the instructor) while AV
coders have a slight inclination towards more interactive
codes (e.g., group discussion and joking).
With this work as evidence that educationally mean-

ingful qualitative coding can be achieved with visual data,
we see the opportunity for significant scaling of qualitative
coding through automation using computer vision.
Creating coding schemes, as always, requires substantial
qualitative work to develop and validate the schemes in the
target settings. Then, extending these qualitative studies to
a larger scale through computer automation would addi-
tionally require testing the reliability of the scheme’s visual
cues alone. However, after the initial investment, automa-
tion would allow the work of many qualitative studies to
extend to large-scale assessment at relatively low cost. This
has potential to provide valuable feedback to curriculum
developers, classroom designers, and instructors across
institutions and classrooms.

II. BACKGROUND

The classroom learning activities in our video collection
are fromMaryland Tutorials in Physics Sense-Making [15].
These tutorials are worksheet-based collaborative active-
learning activities designed to reconcile students’ physics
intuition, experimental results, and calculations. Our video
captures students working collaboratively in groups of four.
We base our work on the Scherr and Hammer coding

scheme, which uses group behavioral clusters that indicate
an epistemological frame [13]. These behavioral clusters
are identified by speech, other audible cues, and body
language that occur simultaneously among group members.
Table I breaks down the five behavioral clusters into audio
and visual cues [13]. Briefly, in the blue cluster, students
focus on completing the tutorial worksheet. In the green
cluster, students focus on discussion with their group
members. In the red cluster, students focus on interaction
with a course instructor or teaching assistant (TA) interact-
ing directly with the group. In the yellow cluster, students
engage in emotional or joking behavior. The gray cluster
encompasses time in which the students are not involved in
small group interaction, including time in which the
instructor addresses the entire class. Groups usually tran-
sition between different behavioral clusters in unison,
allowing behavioral labeling to be done for the group as
a whole rather than for each individual [13].
Upon analyzing the types of utterances during each of

these behavioral clusters, Scherr and Hammer found that
the clusters served to mark not only epistemological
framing, but also the conceptual substance of student
reasoning. The discussion frame “is associated with origi-
nal speech about the physics ideas,” in contrast to the
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worksheet frame, which is associated with reading the
activity and asking simple, clarifying questions [13]. In
further support that these epistemological frames suggest
the depth of students’ thinking, a study with a subset of this
data set showed that 81% of “chaining” (verbally expressed
logical inference) occurred in the discussion frame [13].
The Scherr and Hammer coding scheme provides only

one perspective of epistemology from a rich literature, much
of which focuses on discourse or responses to question-
naires (see, e.g., Refs. [16–18]). We begin with the Scherr
and Hammer coding scheme for this analysis because, in
addition to analysis of student discourse, it explicitly notes
visual cues in addition to speech and other audible cues.
While the original study showed that these behavioral

clusters are reliably detectable with a combination of audio
and visual data, cues from conversation in particular are rich
and defining. Previous work has shown that the conversation
and other audio cues together are enough to identify
behavioral clusters without visual information [19].
Conversely, as Table I shows, the visual cues that co-occur

with the audio cues of each behavioral frame are large in
number and well defined. In the blue cluster, students’ hands
are relatively still (in contrast to gesturing), their faces are
neutral, their bodies lean forward towards the table, and their
gaze is generally on their papers. There can be eye contact
within this label; however, it is fleeting. In the green cluster,
there will often be prolific gesturing. Students’ faces are
animated, they sit up straighter, and theymake significant eye
contact. In the red cluster, the students also sit up straight like

in the green discussion label; however, their gaze direction is
heavily favored towards the teaching assistant. The students
have little or nogestures.When the students talk, they address
their speech to the teaching assistant rather than the group. In
the yellow cluster, visual signs of emotion are present such as
giggling, smiling, adjusting in seat (straightening or stretch-
ing), fidgeting, and touching their face, hair, or arms. They
often have an “unsettled gaze:” eyes glancing at multiple
places that are distinct from the student’s group and his or her
paper. Because of the number of visual observations asso-
ciated with each behavioral cluster, we hypothesized that the
coding scheme would have high interrater reliability using
only visual information—without audio.
Research into nonverbal communication has explored

many of the cues described above including gestures,
posture, touching, facial expressions, eye behavior, and
nonverbal vocal behavior [20]. A substantial history of
work looks at these cues—in isolation from one another—
as markers of behavior. Examples include posture con-
gruence indicating involvement [21], gaze behavior
marking cognitive processing [22,23], and gestures mark-
ing enthusiasm [20]. Combinations of these cues can
measure complicated aspects of group dynamics such as
group rapport [24] and power within the interaction [25].
Although studies in nonverbal communication often look

at interaction in the absence of conversation, the existing
notions of “verbal” and “nonverbal” do not perfectly align
with our notions of “audio” and “visual.” Nonlinguistic
audio cues such as speech volume and inflection can be

TABLE I. Summary of behavioral clusters first identified by Scherr and Hammer [13].

Qualitative code and
associated epistemology Audio cues Visual cues

Blue: Completing the
tutorial worksheet

• Low, quiet, indistinct tone
of voice (muttering) • Eyes primarily on paper

• Brief speech episodes • Brief glances at peers
• Rising intonation at the beginning and
falling intonation at the end of speech episodes

• Bodies lean forward 30 degrees to
the vertical

• Incomplete sentences of an initiator often
completed by a peer

• Few gestures
• Faces relatively neutral

Green: Engaged
in a discussion

• Animated voices • Straight posture (sitting up straight)
• Clear, loud, and dynamic speech • Frequent eye contact with one another

• Animated faces
• Prolific gesturing

Red: Listening to the
teaching assistant (TA)

• Little student speech • Eye contact between students and
teaching assistant

• Students’ bodies straight and still
• Few student gestures

Yellow: Joking • Hedging or joking tone of voice • Giggling or smiling
• Shifting bodies in seats
• Touching own face or hair
• Unsettled gaze (moves among peers, papers,
other points in the room)

Gray: Other
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considered nonverbal communication [26]. On the other
hand, emblem gestures have a clear linguistic meaning in a
culture, such as the placement of a finger in front of the
mouth to signal quiet, and can be considered verbal; in fact,
such gestures activate the same brain regions as verbal
communication [27]. While it is therefore hard to find a
perfect match within the sociology literature of an analysis
of group dynamics with only visual cues, they do exist. For
example, Kendon describes how a specific body movement
marks the end of conversation: participants signal the end
of a “close salutation” with body movement away from the
location of the greeting [28]. Beyond this, some visual
nonverbal signals are so strong that computer vision has
had success in measuring them with visual cues alone [29].
Though we study video from university physics recita-

tion sections, the general nature of the worksheet activity
and visual coding elements suggest that this research is not
science specific; we expect visual-only coding should
generalize to other coding schemes, and coding schemes
beyond epistemology. For example, the Interactive
Teaching Map measures on- and off-task classroom behav-
ior and group engagement [11]. Markers such as writing,
raising one’s hand to speak, and participating in group
discussion are similar to markers used in the current study.
Similarly, the STROBE tool used to assess medical school
education includes a classification of each learner’s activity
in time, such as “talking, listening, reading, or writing” [12].
Like the current study, measurements like this are likely to
have high interrater reliability using only visual cues.

III. METHOD

A. Data set and coding scheme

The data set for this study consists of 886 5-sec intervals
(74 min) of video footage; each video captures one group of
four students doing a worksheet activity. The complete data
set comprises two student groups working on two tutorial
worksheet activities.
The data set and coding scheme, using audible and visual

cues together, have been used in previous studies and
consistently demonstrate high interrater reliability—over
90% renormalized percent agreement (see next section for
definition) in the original publication using both visual and
aural observations [13]. We describe the original coding
scheme in the Sec. II of this paper and show the breakdown
of visual and aural cues in Table I.

B. Coding procedure

Similar to the procedure outlined by Scherr and Hammer,
coders independently watch each video [13]. For each 5-sec
time interval in the video, they apply exactly one of the five
codes described in the previous section. However, in our
procedure, coders first apply the codes while watching the
videos with the sound turned off. We name this mode of
coding visual only, abbreviated V. The second mode of

coding uses both audio and visual information. We name
this mode audiovisual, abbreviated AV. The original study
used AV coding exclusively.
Four coders participated in our study, each coding the

full data set first in V and then in AV mode. The ordering
ensures that coders using V mode do not have knowledge
of conversation content associated with visual information.
In general, when studies compare two techniques, the

design should be symmetric so that the technique first used
by a coder is varied. This design alleviates concern that
similarity in the results between the techniques is due to
coders recalling the data from their initial exposure to the
data through coding with the first technique. In this study,
however, we do not believe it is possible to code in the V
mode after having coded in the AV mode. The AV mode
provides coders with speech that coordinates with visual
cues, making these visual cues readily associated with the
speech even when watching the video again without sound.
Coders who have watched the audio with video have a very
difficult time, in subsequent watching of the video without
sound, unhearing the conversation that they heard previ-
ously. In other words, we do not believe it is possible for a
coder to first watch the video with sound and then watch it
without sound, as the memory of the conversation con-
tinues to provide sound to some extent in the coder’s mind.
On the other hand, the visual cues without sound are not as
uniquely memorable. Having seen the visual cues previ-
ously does not hamper watching the video subsequently
with sound in the same way as using the other order.

C. Coder training

Coders train with an iterative process. First, they read a
description of the labeling scheme by Scherr and Hammer
[13]. Then they code a short video, which is not part of the
data set of this study, from the same collection of video.
After completing one training video, new coders compare
their results with the results of a trained coder. New and
trained coders then discuss areas of discrepancy. If inter-
rater percent agreement is less than 80% on the first training
video, new coders repeat the training procedure on addi-
tional training video. All coders achieved interrater percent
agreement over 80% after one or two training exercises.

D. Analysis

To determine differences in coding between the modes,
we ask the following research questions:

(i) How internally reliable is each mode?
(ii) How reliable are the codes when comparing V and

AV modes?
(iii) Which code pairs are commonly discrepant between

modes? Is there consistent directionality between
discrepant pairs of codes?

The most common way to measure interrater reliability is
percent agreement. To calculate the percent agreement
between two coders, we count the number of time intervals
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in a video for which both coders applied the same code. We
divide the number of time intervals with consensus by the
total number of time intervals to yield the percent agree-
ment between the two coders for that video.
A similar way to measure interrater reliability is renor-

malized percent agreement, the chief statistic used in the
original study [13]. The rationale is that although group
behavior overall is strikingly unified, it can take a small
period of time for all members of the group to transition
between behavioral frames. Renormalized agreement takes
this fuzzy transition time into account by ignoring disagree-
ments that last only 5 seconds. A single time interval is
removed from the calculation if coders disagree on the code
for the single time interval, but agree on the codes for the
time interval just before and the time interval just after.
With these isolated 5-sec disagreements removed, the
calculation of renormalized percent agreement is identical
to percent agreement: the total number of consensus lines is
divided by the total number of lines.
Another common way to measure interrater reliability is

Cohen’s kappa [30]. Cohen’s kappa is a statistic that
accounts for chance agreement in a labeling scheme by
taking into account the frequency of the label. Guidelines
indicate strength of agreement based on Cohen’s kappa
values: kappa less than 0 means agreement is less than that
expected by chance; kappa above 0.6 is substantial agree-
ment, and kappa over 0.8 is almost-perfect agreement [31].
To determine the interrater reliability of the full labeling

scheme, we use percent agreement, renormalized percent
agreement, and Cohen’s kappa. For each video, we
compare different coders two by two in the following
mode-comparison categories: (1) V vs V, (2) AV vs AV, and
(3) V vs AV. We calculate the mean and standard error of
the mean for each category, averaging over all pairs of
coding in the category. From these statistics, we measure
the interrater reliability within each mode and the reliability
between the modes averaged over all raters.

To compare specific similarities and differences in
results between V and AV coding modes, we create a code
distribution table for each video in each mode. Table II
shows an example code distribution table. It shows the
number of coders choosing each code at each time interval.
It keeps track only of the distribution of codes at each time
interval within a single mode, not which coders applied
which codes.
We use the following terminology: “consensus” refers to

the level of similarity within a single mode, “agreement”
refers to the level of similarity between the two modes.
Within a mode, consensus occurs when all but one coder
apply the same code. Intermode agreement happens in two
cases, which Table II illustrates. If both modes have
consensus on the same code, the time interval has “code
agreement.” A special case, “perfect code agreement,”
occurs if coders in both modes unanimously agree on a
single code. If neither mode has consensus, the time interval
is considered “ambiguity agreement” because the behavior
is ambiguous within each modes. Intermode disagreement
happens in two cases. If both modes have consensus but the
code is different for each mode, the time interval has “code
disagreement.” The last type of disagreement arises when
there is a consensus in one mode but no consensus in the
other mode. This can occur when the consensus is in the V
mode only or the AV mode only.
To measure the level of overall agreement, we count the

number of lines in each agreement category over both
videos. We then analyze the differences in consensus codes
in time intervals with disagreement. The next section
describes the results of this process.

IV. RESULTS

Using three different metrics, we calculate interrater
reliability for both V and AV modes of coding. These
results are visible in the first two rows of Table III. Cohen’s

TABLE II. Examples of code distributions of four coders at single time intervals and their intermode agreement classifications.

AV mode V mode

Intermode agreement Worksheet Discussion TA Joking Other Worksheet Discussion TA joking other

Perfect code agreement: subset of code
agreement where consensus is unanimous

4 0 0 0 0 4 0 0 0 0

Code agreement: both modes come to
consensus about a single code

3 1 0 0 0 4 0 0 0 0
3 1 0 0 0 3 0 1 0 0

Ambiguity agreement: neither mode
comes to consensus

2 2 0 0 0 1 2 0 0 1

Code disagreement: both modes
come to consensus,
but the consensus is different
between modes

0 4 0 0 0 4 0 0 0 0
1 3 0 0 0 4 0 0 0 0
1 3 0 0 0 3 0 1 0 0

No-consensus disagreement: one mode comes
to consensus, but the other does not

2 2 0 0 0 3 0 1 0 0
0 4 0 0 0 2 1 1 0 0
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kappa for V vs V coding has mean value of 0.815,
classifying the interrater reliability as near perfect.
Reliability of AV vs AV coding is slightly lower with a
mean Cohen’s kappa value of 0.79, and classifying it as
near-perfect agreement within error. The other statistics
also show similar levels of agreement within each mode.
The same three metrics applied to intermode compar-

isons are visible in the bottom row of Table III. In fact, two
coders using different modes (V vs AV) have equivalent
interrater reliability to different coders both using AV (same
mode). Figure 1 also demonstrates the extent of intermode
reliability. Combining the results of all coders in all modes,
we see that coders between modes agree 87% of the time.
Seventy percent of the time, all coders pick the same code
such that agreement between modes is perfect. Two percent
of the time, both modes agree that behavior is ambiguous.
Disagreements in which a consensus code is chosen in each
mode but disagrees between modes occur 3% of the time.

The final 10% of time involves consensus in one mode only
but no consensus in the other mode, with the lack of
consensus being in the V and AV modes equally often.
The coding modes have small but systematic differences.

V coders have a slight inclination towards less interactive
codes (e.g., focus on worksheet and listening to the
instructor) while AV coders have a slight inclination
towards more interactive codes (e.g., group discussion
and joking). These differences are evident when looking
at code disagreements and no-consensus disagreements in
Figs. 2 and 3. As seen in Fig. 2, it is more common for AV
coders to code an interaction as discussion when V coders
identify the interaction as worksheet than vice versa.
Similarly, Fig. 3 shows that there are more time intervals—
more than double—for which the AV mode consensus is
discussion when the V mode is ambiguous than vice versa.
Along the same line, Fig. 3 also shows that there are more
time intervals for which the V mode consensus is work-
sheet when the AV mode is ambiguous than vice versa.

FIG. 1. Intermode reliability. This figure contains the codes,
represented by the colors from Table I, for all 886 time segments
in the study. Audiovisual (AV) coding is represented in the four
columns on the left and visual-only (V) coding in the four
columns on the right. Agreement constitutes 87% of time
intervals. Explanations of intermode agreement are shown in
Table II. The time intervals in this figure are not presented in
chronological order; instead, they are reordered and grouped
according to agreement type.

FIG. 2. Code disagreements. Code disagreements occur at time
intervals when the codes chosen in the V and AV modes differ.
The AV mode coders are more likely to have consensus on
discussion when the V mode coders have consensus on work-
sheet, and vice versa. Also, the AV mode coders are slightly more
likely than the V mode coders to recognize an interaction as
joking. Combinations of codes not shown above did not have
code disagreements.

TABLE III. Top two rows: Using three different metrics, interrater reliability is high for both V (video only) and
AV (audiovisual) modes of coding. Bottom row: Intermode reliability (V vs AV) is high. Bottom two rows: Two
coders using different modes (V vs AV) have equivalent interrater reliability as two coders both using AV (same
mode). Then, coders’ results for both videos are compared two at a time and averaged over coder combinations.
Error is the standard error of the mean.

Comparison type
(different coders)

Number of time-interval
comparisons

Raw agreement
(Cohen’s kappa) Raw agreement(%)

Renormalized
agreement

V vs V 5316 0.815� 0.009 87.4� 0.7 91.6� 0.7
AV vs AV 5316 0.79� 0.01 86� 1 89� 1
V vs AV 10 632 0.790� 0.008 85.7� 0.5 89.3� 0.6
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Figure 3 also shows a stronger bias in the V mode toward
the TA code when the AV mode is ambiguous than vice
versa. Finally, Fig. 2 also shows that the AV mode has a
slight bias towards coding joking over discussion than the
V mode.

V. DISCUSSION

The level of reliability both within and between V and
AV coding modes is high. This result is even more notable
when we consider that, in this example, we reliably
reproduce results for an epistemological coding scheme
without listening to discourse.
While the overwhelming result is the high reliability

between V and AV coding modes, future implementers
should be aware of the small differences between the
modes. A slight bias exists towards interaction codes
(discussion and joking) in the AV mode. This is evident
through a combination of results: (1) code disagreements
(Fig. 2) between discussion and worksheet show that there
are more time intervals where AV coders see behavior as
discussion when V coders view behavior as worksheet than
vice versa—by over a factor of 3, (2) code disagreements
between joking and discussion show that, though the
number is small, there are a few time intervals where
AV coders see behavior as joking when V coders view
behavior as discussion, (3) no-consensus disagreements
(Fig. 3) show that AV coders come to consensus on the
discussion code when V coders have no consensus twice as
often as the reverse. Towards a similar point, a slight bias

exists towards lower interaction codes (worksheet and TA)
in the V mode. The no-consensus disagreements show a
larger number of consensus time intervals in both the
worksheet and TA codes in the V mode than in the
AV mode.
One possible reason for this bias towards interaction in

the AVmode is that in moments of high discrepancy, coders
in the AV mode put more reliance on audio cues even when
nonverbal cues are present. Previous work suggests that
when large discrepancies exist between audio and visual
cues, people rely more strongly on audio [32].
It is tempting in this line of research to consider one

mode of coding as the correct result against which the other
mode is measured. However, neither mode functions as
“ground truth.” AV coders have access to a rich and large
set of information from both audio and visual data. It is
possible a complete data set including both audio and
visual data yields the most accurate behavioral information.
It is also possible that some of this information distracts
from visual behavioral indicators so that the audio cues are
weighted too heavily in the decision to apply a given code.
A related illustration comes from musical competitions.

Tsay studied judgment of musical competitions by musi-
cally trained and musically novice study participants [33].
Although the vast majority of participants, when asked,
considered sound to be the most important feature of a
musical performance, participants who watched the per-
formances without audio were far more likely to select the
winner than participants who listened without visual data or
both watched and listened to the video. Although partic-
ipants considered sound as the most important determi-
nation in choosing a musical winner, visual cues seemed to
be the dominant factor in judgment. Similarly, although we
might think of conversations as defining group interaction,
visual behaviors may give an equal or more reliable read on
educationally significant behaviors.
Increasingly, the extensive manual effort required to train

and deploy V coders can be avoided by instead using
computer vision systems that automatically recognize
activities and interactions from video. These computer
vision systems are “trained” by being given a set of
exemplar video clips for each activity or interaction
category, and then they are deployed to recognize and
annotate instances of those categories in new, unlabeled
video. Ongoing advances in computer vision are allowing
reliable performance in a growing diversity of environ-
ments, using a growing variety of visual cues such as gaze
directions, body positions, and specific movements
[34–37]. In fact, recent work suggests that large classrooms
are particularly amenable to such automated V coding,
since students remain relatively localized around their
seating positions [38].
In regards to the coding process, coders reported that AV

coding is easier than V coding. We speculate the reason for
this is that in AV coding, some behavior is duplicated by

FIG. 3. No-consensus disagreements. No-consensus disagree-
ments occur when one mode has consensus in a time interval
when the other mode does not have consensus. The bars show the
number of time intervals that the mode showing consensus agreed
on a particular code when the other mode did not have consensus.
Both the worksheet and discussion bar pairs show that the AV
mode is slightly biased toward the discussion code while the V
mode is slightly biased toward the worksheet code. Also, the V
mode is slightly biased toward the instructor code when behavior
is ambiguous in the AV mode.
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vocal and visual cues, making it easier to notice. For
example, some information is highlighted by small vocal
responses that an observer using both audio and video
would catch effortlessly. This is likely because, in contrast
to an activity like a basketball game in which the ball is an
obvious indicator of action, action in a conversation is less
obvious visually. Without audio, it is easy for an observer to
focus on one area of the screen where the previous action
occurred and therefore miss what is happening in other
areas. However, we note that while continually surveying a
group as a whole is challenging for a human, it would not
be difficult for a machine.

VI. CONCLUSION

Visual coding has high interrater reliability both between
visual-only coders and when comparing visual-only coders
with coders using both audio and visual data. Because of
this result, we encourage implementation of visual coding
for use with established coding schemes that have been
tested for reliability between visual and audio-visual cod-
ing. In particular, we see this result as advancing the
amount of observation possible in environments that make
it difficult to record student-specific audio. We also see this
result as expanding the number of student groups that can
be analyzed in small classrooms and making studies of
interaction in large-enrollment classrooms more tractable.
When establishing reliability between visual-only and

audio-visual coding modes of coding in a scheme, it is

important to be aware of differences between audio-visual
and visual-only coding. Audio-visual coders are likely to
rely more on audio cues than on visual cues in times when
behavior is highly ambiguous.
Though the work in this paper uses human coders,

advances in computer vision open the door to fully
automated analysis of student classroom video. This would
allow for empirically driven measures of classroom behav-
ior on a large scale. Such measures would be of tremendous
utility to analyze with statistical power collaborative
classroom activities in a given curriculum, pedagogy, or
physical environment.
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