Reducing the gender gap in the physics classroom

Mercedes Lorenzo,† Catherine H. Crouch,‡ and Eric Mazur

Department of Physics, Harvard University

†IES Universidad Laboral, Albacete, Spain
‡ Department of Physics and Astronomy, Swarthmore College
Why be concerned?

- Boys outperform girls on K-12 standardized science tests (NAEP, TIMSS)
- K-12 science gender disparities increase with age
- In AP physics only 36% (AP-B) or 27% (AP-C) of students are girls
- Only 22% of bachelor’s degrees in physics are earned by women
Pedagogy and gender

Some proposed sources of K-12 gender gap:

- Girls have less hands-on experience with science
- Science perceived as a male activity: girls are less confident and encouraged less
- Girls perceive (physical) science as less beneficial to society
- Teachers often interact less with girls than with boys
- Boys often dominate classroom activities
Pedagogy and gender

Some teaching practices that appear to help:

- Placing science in a wider context
- Hands-on experiences
- Non-competitive environment
- Opportunities for all students to ask and explain
- Frequent feedback (praise and constructive criticism) to all students
Interactive engagement

Research-based pedagogies:
- Involve all students actively in learning
- Require students to articulate their ideas
- Frequently involve collaborative or cooperative activities
- Frequently involve hands-on activities

Student learning gains demonstrated thoroughly

Do these pedagogies help female students?
Study: effect of pedagogy

- Calculus-based introductory mechanics for non-majors at Harvard University, 1990 - 1997
- 150-200 students each year, 30-40% women
- Administered Force Concept Inventory as pre- and post-test
Study: effect of pedagogy

Three pedagogies:

- Traditional (passive lecturing)
- Partially interactive (IE1):
 Peer Instruction in class
 traditional discussion section
- Fully interactive (IE2):
 Peer Instruction in class
 Tutorials and cooperative groups in section
Study: effect of pedagogy

Peer Instruction:
- Lectures interspersed with conceptual questions
- All students given time to think, respond, and discuss
- Students gain conceptual understanding
- Quantitative problem-solving skills remain strong

Study: effect of pedagogy

Tutorials: (Univ. of Washington PERG)
- Students work in small groups through guided exercises
- Exercises focus on research-identified student difficulties
- Exercise require students to explain their ideas

Cooperative group problem solving: (Heller group)
- Students instructed in problem-solving strategies
- Groups of three work on challenging problems
Results: FCI pretest

Female students start out behind
Results: FCI posttest

Fully interactive instruction eliminates gap!
Results: FCI posttest

IE2: similar numbers of male and female high scorers
Results: FCI normalized gain

\[g = \frac{\text{post} - \text{pre}}{100 - \text{pre}} \]
Results: grades

More comparable grade distributions with IE2
Why IE2?

- Consistent emphasis on concepts and understanding
- Provides more practice articulating ideas
- May increase female students’ confidence and comfort with interaction
- Research required to understand this!
Does it always work?

- Algebra-based: females gained more, but didn’t catch up
- Calculus-based: may be saturating the test
Does it always work?

- Reformed methods often help, but not always (Finkelstein A21.003)
Conclusions

In the Harvard calculus-based course:
- All students benefit from interactive instruction (IE1 and IE2)
- FCI gender gap eliminated in IE2 course
- Comparable number of male and female high scorers in IE2
- Grade distributions become more balanced

Talk posted at http://mazur-www.harvard.edu
Data tables: FCI and FBT

<table>
<thead>
<tr>
<th>Group</th>
<th>Year</th>
<th>N^M</th>
<th>N^F</th>
<th>FCI Posttest score (%)</th>
<th>FCI Pretest score (%)</th>
<th>MBT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S^M</td>
<td>S^F</td>
<td>$S^M - S^F$</td>
</tr>
<tr>
<td>T</td>
<td>1990</td>
<td>61</td>
<td>44</td>
<td>69 (12)</td>
<td>63 (15)</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>105</td>
<td>61</td>
<td>75 (12)</td>
<td>68 (13)</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td>91</td>
<td>52</td>
<td>75 (13)</td>
<td>70 (12)</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td>121</td>
<td>77</td>
<td>79 (13)</td>
<td>72 (12)</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>115</td>
<td>61</td>
<td>79 (13)</td>
<td>70 (13)</td>
<td>8.3</td>
</tr>
<tr>
<td>IE1</td>
<td>1996</td>
<td>94</td>
<td>52</td>
<td>77 (13)</td>
<td>71 (13)</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>67</td>
<td>47</td>
<td>82 (14)</td>
<td>78 (13)</td>
<td>3.8*</td>
</tr>
<tr>
<td>IE2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>FCI Posttest score (%)</th>
<th>FCI Pretest score (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S^M_i</td>
<td>S^F_i</td>
</tr>
<tr>
<td>T</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>74 (15)</td>
<td>62 (16)</td>
</tr>
<tr>
<td></td>
<td>72 (14)</td>
<td>61 (14)</td>
</tr>
<tr>
<td></td>
<td>75 (15)</td>
<td>60 (16)</td>
</tr>
<tr>
<td></td>
<td>72 (18)</td>
<td>60 (17)</td>
</tr>
<tr>
<td>IE1</td>
<td>71 (19)</td>
<td>61 (19)</td>
</tr>
<tr>
<td></td>
<td>71 (19)</td>
<td>62 (20)</td>
</tr>
<tr>
<td>IE2</td>
<td>71 (19)</td>
<td>62 (20)</td>
</tr>
</tbody>
</table>
Data tables: FCI gains

<table>
<thead>
<tr>
<th>Group</th>
<th>FCI gain (%)</th>
<th>FCI average normalized gain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G^M</td>
<td>G^F</td>
</tr>
<tr>
<td>T</td>
<td>9.2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12 (11)</td>
<td>17 (13)</td>
</tr>
<tr>
<td></td>
<td>16 (12)</td>
<td>18 (11)</td>
</tr>
<tr>
<td></td>
<td>14 (12)</td>
<td>21 (11)</td>
</tr>
<tr>
<td></td>
<td>18 (14)</td>
<td>24 (15)</td>
</tr>
<tr>
<td>IE1</td>
<td>12 (11)</td>
<td>17 (13)</td>
</tr>
<tr>
<td></td>
<td>16 (12)</td>
<td>18 (11)</td>
</tr>
<tr>
<td></td>
<td>14 (12)</td>
<td>21 (11)</td>
</tr>
<tr>
<td></td>
<td>18 (14)</td>
<td>24 (15)</td>
</tr>
<tr>
<td>IE2</td>
<td>20 (14)</td>
<td>26 (16)</td>
</tr>
<tr>
<td></td>
<td>22 (14)</td>
<td>29 (18)</td>
</tr>
</tbody>
</table>

** These p-values are calculated from the distributions of individualized normalized gain for males and for females. No p-values are calculated for the T group because of the lack of a pretest; the gains are calculated using the average IE pretest.
IE1 grade distribution

traditional

IE1
Both male and female low posttest scores eliminated
Comparable numbers of male and female high scorers