Low-loss TiO$_2$ planar waveguides for nanophotonic applications

Jonathan Bradley, Chris Evans, Francois Parsy, Katherine Phillips, Ruwan Senaratne, Erwin Marti, and Eric Mazur

Mazur Group
School of Engineering and Applied Sciences
Harvard University
Outline

Introduction: TiO$_2$ for nanophotonic applications

Deposition of TiO$_2$ films

Results

Conclusion
Introduction

Applications of TiO$_2$ thin films:
Introduction

Applications of TiO_2 thin films:

- Photocatalysis
- Solar cells
- Reflective coatings
- Dielectric layers
Introduction

Applications of TiO$_2$ thin films:

- Photocatalysis
- Solar cells
- Reflective coatings
- Dielectric layers
- Nanophotonics
Introduction

Why TiO$_2$ films for nanophotonics?
Introduction

Why TiO$_2$ films for nanophotonics?

Highly transparent for $\lambda \geq 400$ nm
Introduction

Why TiO$_2$ films for nanophotonics?

Highly transparent for $\lambda \geq 400$ nm
High refractive index: $n_0 \approx 2.4$ at 800 nm
Introduction

Why TiO$_2$ films for nanophotonics?

Highly transparent for $\lambda \geq 400$ nm
High refractive index: $n_0 \approx 2.4$ at 800 nm
High nonlinearity: $n_2 \geq 30 \times n_{2,\text{SiO}_2}$ at 1064 nm*

Introduction

Why TiO$_2$ films for nanophotononics?

Highly transparent for $\lambda \geq 400$ nm
High refractive index: $n_0 \approx 2.4$ at 800 nm
High nonlinearity: $n_2 \geq 30 \times n_{2,\text{SiO}_2}$ at 1064 nm

Potential applications:
Photonic crystals, nonlinear optics, passive devices, active devices
Introduction

Challenges:

\(\text{TiO}_2 \) has several phases: amorphous, anatase, brookite, rutile.

These phases result in a wide range of properties (refractive index, birefringence, nonlinearity, loss).
Introduction

Goal:

Exploit TiO$_2$ as a material for nanophotonic devices for real-world applications.

Requirements:

- Low losses
- Scalable technology
- Small dimensions
Deposition of TiO$_2$ Films

Reactive Sputtering
Deposition of TiO$_2$ Films

Reactive Sputtering

- Excellent uniformity
- Large parameter space for control of film properties
- Multiple targets: potential for doping
- Compatible with Silicon Technology

Deposition of TiO$_2$ Films
Deposition of TiO$_2$ Films

Process Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>20–600</td>
<td>°C</td>
</tr>
<tr>
<td>Pressure</td>
<td>2–5</td>
<td>mTorr</td>
</tr>
<tr>
<td>Power</td>
<td>100–200</td>
<td>W</td>
</tr>
<tr>
<td>Total Flow</td>
<td>40–60</td>
<td>sccm</td>
</tr>
<tr>
<td>O$_2$ Flow %</td>
<td>2–33</td>
<td>%</td>
</tr>
</tbody>
</table>
Results

Film Characterization Methods

Structure: scanning electron microscopy (SEM)
Composition: X-ray photoelectron spectroscopy (XPS)
Crystalline phase: Raman spectroscopy
Optical properties: ellipsometry and prism coupling
Results

Structure

Cross-section

Surface

Stoichiometry confirmed via XPS measurements.
Results

Phase

![Graph showing Raman shift intensity](image)
Results

Phase

![Graph showing Raman shift vs. intensity with peaks at 300 cm⁻¹ and 520 cm⁻¹ for Si, at 20 °C.](image)
Results

Additional peak observed for films deposited at $T > 300^\circ C$
Results

Phase

Results
Dispersion

![Graph showing the relationship between refractive index and wavelength (nm) at 20 °C and 350 °C. The refractive index decreases as the wavelength increases.]
Results

Propagation Loss
Results

Propagation Loss

![Graph showing propagation loss with intensity on the y-axis and propagation distance on the x-axis. The graph compares the intensity at different temperatures: 20 °C and 350 °C. The inset image shows a TiO\textsubscript{2} waveguide with guided light.](image-url)
Results

Propagation Loss

![Graph showing intensity vs. propagation distance with data points for 0.4 dB/cm, 3.5 dB/cm, and 20 °C, 350 °C. Image of TiO₂ waveguide with guided light shown as inset.](image)
Results

TiO$_2$ Film Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Amorphous Films</th>
<th>Anatase Polycrystalline Films</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>20</td>
<td>350</td>
</tr>
<tr>
<td>Deposition rate (nm/hr)</td>
<td>100</td>
<td>16</td>
</tr>
<tr>
<td>Refractive index</td>
<td>2.35</td>
<td>2.43</td>
</tr>
<tr>
<td>Loss (dB/cm)</td>
<td>0.4</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* At $\lambda = 826$ nm
Conclusion

We have developed a method for depositing amorphous and anatase TiO$_2$ thin films with low losses.

These high-index thin films will be used for nanophotonics applications over a wide wavelength range.
Acknowledgements

National Science Foundation (NSF)

Nanoscale Engineering and Science Center (NSEC)

Center for Nanoscale Systems (CNS)