Effects of annealing on optical properties of TiO$_2$ planar waveguides

Ruwan Senaratne, Christopher Evans, Francois Parsy, Katherine Phillips, Jonathan Bradley, Erwin Marti, and Eric Mazur

Mazur Group
School of Engineering and Applied Sciences
Harvard University
Outline

Introduction: TiO$_2$ for nanophotonic applications

Optimization of optical parameters of TiO$_2$ thin films

Results: Reduction of Propagation Losses through Annealing
Introduction

Applications of TiO$_2$ thin films

- photocatalysis
- solar cells
- reflective coatings
- dielectric layers
- nanophotonics
Introduction

Applications of TiO$_2$ thin films

photocatalysis
solar cells
reflective coatings
dielectric layers

nanophotonics
Introduction

Why TiO$_2$ for nanophotonics?
Introduction

Why TiO$_2$ for nanophotonics?

Highly transparent for $\lambda \geq 400$ nm
Why TiO$_2$ for nanophotonics?

- Highly transparent for $\lambda \geq 400$ nm
- High refractive index: $n_0 \approx 2.4$ at 800 nm
Why TiO$_2$ for nanophotonics?

Highly transparent for $\lambda \geq 400$ nm
High refractive index: $n_0 \cong 2.4$ at 800 nm
High nonlinearity: $n_2 \geq 30 \times n_{2, SiO_2}$ at 1064 nm*

Introduction

Why TiO$_2$ for nanophotonics?

Highly transparent for $\lambda \geq 400$ nm
High refractive index: $n_0 \approx 2.4$ at 800 nm
High nonlinearity: $n_2 \geq 30 \times n_{2,\text{SiO}_2}$ at 1064 nm

Potential applications:
- photonic crystals, nonlinear optics,
- active devices, passive devices
In order to exploit these properties, we require TiO$_2$ thin films with:

- high linear index (n_0)
- low propagation losses
- high nonlinearity (n_2)
Optimization of TiO$_2$ Thin Films

In order to exploit these properties, we require TiO$_2$ thin films with:

- high linear index (n_0)
- low propagation losses
- high nonlinearity (n_2)
Optimization of TiO$_2$ Thin Films

These properties are sensitive to

deposition method
deposition parameters
post-deposition annealing
Optimization of TiO$_2$ Thin Films

These properties are sensitive to

deposition method

deposition parameters

post-deposition annealing
Optimization of TiO$_2$ Thin Films

These properties are sensitive to

deposition method
 - sol-gel method
 - e-beam evaporation
 - atomic layer deposition
 - non-reactive sputtering
 - reactive sputtering
Optimization of TiO$_2$ Thin Films

These properties are sensitive to deposition method:

- sol-gel method
- e-beam evaporation
- atomic layer deposition
- non-reactive sputtering
- reactive sputtering
Optimization of TiO$_2$ Thin Films

These properties are sensitive to

deposition method

deposition parameters

post-deposition annealing
Optimization of TiO$_2$ Thin Films

These properties are sensitive to

deposition method
deposition parameters
post-deposition annealing
Optimization of TiO$_2$ Thin Films

These properties are sensitive to

deposition parameters

- amorphous films
- high index ($n_0 = 2.34$)*
- low loss (0.4 dB/cm)**

*λ = 826 nm
** Fundamental mode, TE polarization, λ = 826 nm
Optimization of TiO$_2$ Thin Films

These properties are sensitive to

deposition method

deposition parameters

post-deposition annealing
Optimization of TiO$_2$ Thin Films

These properties are sensitive to:

- deposition method
- deposition parameters
- post-deposition annealing
Annealing of TiO$_2$ Thin Films

Annealing can cause transitions between different phases of TiO$_2$, which have different optical properties.

In the literature*

<table>
<thead>
<tr>
<th>Phase</th>
<th>Anneal Temperature ($^\circ$C)</th>
<th>Refractive Index (n_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphous</td>
<td>As deposited</td>
<td>2.1</td>
</tr>
<tr>
<td>Anatase</td>
<td>300</td>
<td>2.2</td>
</tr>
<tr>
<td>Rutile</td>
<td>700-900</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Annealing of TiO$_2$ Thin Films

Annealing can cause transitions between different phases of TiO$_2$, which have different optical properties.

In the literature

Little to no discussion of the effects of annealing on the waveguiding properties of TiO$_2$ thin films.
Annealing of TiO$_2$ Films

Goal: Determine if losses can be improved via annealing
Annealing of TiO$_2$ Films

Goal: Determine if losses can be improved via annealing

Films were deposited onto oxidized silicon wafers using Reactive Sputtering under ambient conditions.

<table>
<thead>
<tr>
<th>Film Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>310 nm</td>
</tr>
<tr>
<td>Refractive index (n_0)*</td>
<td>2.34</td>
</tr>
<tr>
<td>Phase</td>
<td>Amorphous</td>
</tr>
<tr>
<td>Propagation losses**</td>
<td>> 15 dB/cm</td>
</tr>
</tbody>
</table>

*λ = 826 nm

** Fundamental mode, TE polarization, λ = 826 nm
Annealing of TiO$_2$ Films

Several anneals were conducted between 100 and 800° C.

Each anneal was conducted:

- for 180 minutes
- in an oxygen environment (250 sccm)
Results

Film Characterization Methods

Refractive Index: prism coupling
Crystalline phase: Raman spectroscopy
Propagation losses: prism coupling
Results

Prism Coupling

![Image of Prism Coupling](image-url)
Results

Prism Coupling
Results

Refractive index*

*λ = 826 nm
Results

Refractive index

*λ = 826 nm
Results

Crystalline Phase

![Graph showing Raman Shift vs Intensity](image-url)
Results

Crystalline Phase

![Graph showing Raman shift with peaks at 300 cm⁻¹ and 520 cm⁻¹](image)

- Si (520 cm⁻¹)
- Si (300 cm⁻¹)

200°C
Results

Crystalline Phase

TiO$_2$ film is non-crystalline.
Results

Crystalline Phase

TiO$_2$ film is amorphous.
Results

Crystalline Phase

![Graph showing Raman shift vs. intensity with peaks at 250°C and 200°C.](image)
Results

Crystalline Phase

Results

Crystalline Phase

TiO$_2$ film shows some anatase structure

- 250°C
- 200°C

Raman Shift (cm$^{-1}$)

Intensity (a. u.)
Results

Propagation Loss

TiO$_2$ waveguide
Guided light
Results

Propagation Loss

Fundamental mode, TE polarization, $\lambda = 826$ nm
Results

Propagation Loss

Fundamental mode, TE polarization, $\lambda = 826$ nm
Results

Propagation Loss

Fundamental mode, TE polarization, $\lambda = 826$ nm
Results

<table>
<thead>
<tr>
<th>Anneal Temperature [°C]</th>
<th>Propagation loss* [dB/cm] ± 0.05 dB/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>As deposited</td>
<td>> 15</td>
</tr>
<tr>
<td>100</td>
<td>4.60</td>
</tr>
<tr>
<td>150</td>
<td>1.62</td>
</tr>
<tr>
<td>200</td>
<td>1.28</td>
</tr>
<tr>
<td>250</td>
<td>> 15</td>
</tr>
<tr>
<td>300</td>
<td>> 15</td>
</tr>
<tr>
<td>400</td>
<td>> 15</td>
</tr>
<tr>
<td>600</td>
<td>> 15</td>
</tr>
<tr>
<td>800</td>
<td>> 15</td>
</tr>
</tbody>
</table>

* Fundamental mode, TE polarization, $\lambda = 826$ nm
Results

<table>
<thead>
<tr>
<th>Anneal Temperature [°C]</th>
<th>Propagation loss* [dB/cm] ± 0.05 dB/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>As deposited</td>
<td>> 15</td>
</tr>
<tr>
<td>100</td>
<td>4.60</td>
</tr>
<tr>
<td>150</td>
<td>1.62</td>
</tr>
<tr>
<td>200</td>
<td>1.28</td>
</tr>
<tr>
<td>250</td>
<td>> 15</td>
</tr>
<tr>
<td>300</td>
<td>> 15</td>
</tr>
<tr>
<td>400</td>
<td>> 15</td>
</tr>
<tr>
<td>600</td>
<td>> 15</td>
</tr>
<tr>
<td>800</td>
<td>> 15</td>
</tr>
</tbody>
</table>

*Fundamental mode, TE polarization, \(\lambda = 826\) nm

Loss measurements stable over time at room temperature.
Results

<table>
<thead>
<tr>
<th>Anneal Temperature [°C]</th>
<th>Propagation loss* [dB/cm] ± 0.05 dB/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>As deposited</td>
<td>> 15</td>
</tr>
<tr>
<td>100</td>
<td>4.60</td>
</tr>
<tr>
<td>150</td>
<td>1.62</td>
</tr>
<tr>
<td>200</td>
<td>1.28</td>
</tr>
<tr>
<td>250</td>
<td>> 15</td>
</tr>
<tr>
<td>300</td>
<td>> 15</td>
</tr>
<tr>
<td>400</td>
<td>> 15</td>
</tr>
<tr>
<td>600</td>
<td>> 15</td>
</tr>
<tr>
<td>800</td>
<td>> 15</td>
</tr>
</tbody>
</table>

* Fundamental mode, TE polarization, \(\lambda = 826 \text{ nm} \)
Results

<table>
<thead>
<tr>
<th>Anneal Temperature [°C]</th>
<th>Propagation loss* [dB/cm] ± 0.05 dB/cm</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>As deposited</td>
<td>> 15</td>
<td>Amorphous</td>
</tr>
<tr>
<td>100</td>
<td>4.60</td>
<td>Amorphous</td>
</tr>
<tr>
<td>150</td>
<td>1.62</td>
<td>Amorphous</td>
</tr>
<tr>
<td>200</td>
<td>1.28</td>
<td>Amorphous</td>
</tr>
<tr>
<td>250</td>
<td>> 15</td>
<td>Anatase</td>
</tr>
<tr>
<td>300</td>
<td>> 15</td>
<td>Anatase</td>
</tr>
<tr>
<td>400</td>
<td>> 15</td>
<td>Anatase</td>
</tr>
<tr>
<td>600</td>
<td>> 15</td>
<td>Anatase</td>
</tr>
<tr>
<td>800</td>
<td>> 15</td>
<td>Anatase</td>
</tr>
</tbody>
</table>

* Fundamental mode, TE polarization, $\lambda = 826$ nm
Results

<table>
<thead>
<tr>
<th>Anneal Temperature [°C]</th>
<th>Propagation loss* [dB/cm] ± 0.05 dB/cm</th>
<th>Phase</th>
<th>Index ((n_o)) ± 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>As deposited</td>
<td>> 15</td>
<td>Amorphous</td>
<td>2.34</td>
</tr>
<tr>
<td>100</td>
<td>4.60</td>
<td>Amorphous</td>
<td>2.34</td>
</tr>
<tr>
<td>150</td>
<td>1.62</td>
<td>Amorphous</td>
<td>2.34</td>
</tr>
<tr>
<td>200</td>
<td>1.28</td>
<td>Amorphous</td>
<td>2.34</td>
</tr>
<tr>
<td>250</td>
<td>> 15</td>
<td>Anatase</td>
<td>2.38</td>
</tr>
<tr>
<td>300</td>
<td>> 15</td>
<td>Anatase</td>
<td>2.38</td>
</tr>
<tr>
<td>400</td>
<td>> 15</td>
<td>Anatase</td>
<td>2.38</td>
</tr>
<tr>
<td>600</td>
<td>> 15</td>
<td>Anatase</td>
<td>2.38</td>
</tr>
<tr>
<td>800</td>
<td>> 15</td>
<td>Anatase</td>
<td>2.38</td>
</tr>
</tbody>
</table>

* Fundamental mode, TE polarization, \(\lambda = 826\) nm
Results

Implications

- low loss TiO$_2$ thin films fabricated through low temperature process
 - compatible with hybrid technologies
 - for integrated optics

Potential Drawback

- phase transition above 200º C
 - potential devices limited to lower temperatures
Conclusion

Annealing at low temperatures (< 200\(^\circ\) C) results in:
- amorphous films
- no change in index (2.34)
- decrease in propagation losses (up to 1.28 dB/cm)
Annealing at low temperatures (< 200° C) results in:
- amorphous films
- no change in index (2.34)
- decrease in propagation losses (up to 1.28 dB/cm)

Annealing at higher temperatures results in:
- anatase films
- higher index (2.38)
- higher propagation losses (> 15 dB/cm)
Conclusion

We have reduced planar propagation losses in TiO$_2$ thin films by annealing.

TiO$_2$ thin films show promise for nonlinear nanophotonics.
Acknowledgements

National Science Foundation (NSF)

Nanoscale Engineering and Science Center (NSEC)

Center for Nanoscale Systems (CNS)