Femtosecond laser processing of titanium

Kasey Phillips
Beth Landis, Cynthia Friend & Eric Mazur
Harvard University

Hyperdoping Research Meetup 2011
<table>
<thead>
<tr>
<th>Rb</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
<th>Mo</th>
<th>Tc</th>
<th>Ru</th>
<th>Rh</th>
<th>Pd</th>
<th>Ag</th>
<th>Cd</th>
<th>In</th>
<th>Sn</th>
<th>Sb</th>
<th>Te</th>
<th>I</th>
<th>Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Nb</td>
<td>Y</td>
<td>Zr</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
<td>Be</td>
<td>B</td>
<td>Al</td>
<td>Ga</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>S</td>
<td>Se</td>
<td>Te</td>
<td>P</td>
<td>Si</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The periodic table shows elements arranged in groups and periods. The elements are categorized by their atomic number, electron configuration, and chemical properties. The table includes elements from Group I (alkali metals) to Group VIII (transition metals) and periods from Period 1 (He) to Period 7.
You can dope anything with anything.
You can dope anything with anything almost almost with anything.

Chemical selectivity matters
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Li</td>
<td>Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>He</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why TiO$_2$?
Why TiO$_2$?

UV

CB \rightarrow e$^-$

VB \rightarrow h$^+$

TiO$_2$ electrode

counter electrode

H$_2$O \rightarrow H$_2$

H$_2$O \rightarrow O$_2$

Graetzel, M. Nature (2001)
Why TiO$_2$?

Graetzel, M. Nature (2001)
Why TiO$_2$?

Graetzel, M. Nature (2001)
Why TiO$_2$?

![Graph showing the absorptance of TiO$_2$ across different wavelengths. The graph indicates that TiO$_2$ has high absorptance in the UV region and low absorptance in the visible and infrared regions.](http://bouman.chem.georgetown.edu/S02/lect23/lect23green.html)
Why TiO₂?

TiO₂ absorbance graph showing spectral irradiance (W/m²/nm) and wavelength (nm) with UV, visible, and infrared regions highlighted.

- UV: 5% absorbance
- Visible: 45% absorbance
- Infrared: 50% absorbance

Absorbance values at different wavelengths:
- 0.5 at 250 nm
- 0.4 at 500 nm
- 0.3 at 750 nm
- 0.2 at 1000 nm
- 0.1 at 1500 nm
- 0.05 at 2000 nm

Spectral irradiance peaks at different wavelengths:
- 2.5 at 250 nm
- 2.0 at 500 nm
- 1.5 at 750 nm
- 1.0 at 1000 nm
- 0.5 at 1500 nm
- 0.05 at 2000 nm

Additional information:
- http://bouman.chem.georgetown.edu/S02/lect23/lect23green.html
Produce structured TiO$_2$ surfaces using femtosecond laser processing

Dope TiO$_2$ with nitrogen and chromium

Improve photocatalysis of water at doped TiO$_2$ electrodes
Production of TiO$_2$
Production of TiO$_2$

- fs laser
- O$_2$
- Ti

800 nm
2.5 kJ/m2
50 shots/area
Production of TiO$_2$ microstructures

untreated titanium

laser treated titanium
Production of TiO$_2$

structural data: XPS

Untreated titanium

Laser treated titanium

Binding energy (eV)

Relative counts (a.u.)

8 min sputter

Surface
<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Li</td>
<td>Be</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
</tr>
<tr>
<td>Li</td>
<td>Be</td>
<td>Mg</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chemical Selectivity

fs laser

N₂

O₂

Ti
Chemical Selectivity

Microstructures

Untreated

O2

Air

N2
chemical selectivity

structural data: XPS

relative counts (a.u.)

binding energy (eV)

O (1s)

Ti (2p)

O₂

air

N (1s)

N₂

untreated
Chemical Selectivity

structural data: XPS

![Graph showing binding energy vs. relative counts for different treatments of TiO₂ and Ti.](image)

- Ti 4⁺
- Ti 0

- Untreated TiO₂
- Untreated Ti
- O₂
- Air
- N₂
Laser fabricated doped TiO$_2$

Laser fabricated doped TiO$_2$

800 nm
2.5 kJ/m2
50 shots/area
Laser fabricated doped TiO$_2$

structural data: XPS

![Graph showing XPS data for Cr (2p), Ti (2p), O (1s), and C (1s) binding energies with relative counts (a.u.) on the y-axis and binding energy (eV) on the x-axis. The graph compares data from 10 min, 20 min, and surface sputtering.]
Laser fabricated doped TiO$_2$

photocatalysis

UV-vis

spectrophotometer
Laser fabricated doped TiO$_2$

photocatalysis

- untreated Ti
- TiO$_2$
- TiO$_2$:Cr 6-10%

normalized absorbance

0 20 40 60

0 0.2 0.4 0.6 0.8 1.0

time (min)
Form nanostructured TiO$_2$ with laser processing

Cannot introduce N$_2$ into TiO$_2$ because of chemical selectivity

Control chromium doping but catalysis is not enhanced

Annealling could increase photocatalysis for laser doped TiO$_2$
Thank you!

Support provided by NSF Graduate Research Fellowship and Harvard Center for the Environment
Goal:

To transform semiconductor band structure to harvest solar energy
Laser fabricated doped TiO$_2$
Production of TiO$_2$

structural data: XPS

We have produced TiO$_2$ with laser processing
Laser fabricated doped TiO$_2$ microstructures

- 0 nm Cr, no doping
- 10 nm Cr, 7% Cr-doped
- 70 nm Cr, 30% Cr-alloy
Chemical Selectivity
Laser fabricated doped TiO$_2$ photocatalysis

![Graph showing normalized absorbance over time for different samples.](image)

- untreated Ti
- TiO$_2$
- TiO$_2$:Cr 6-10%