Femtosecond-laser hyperdoping: controlling sulfur concentrations in silicon for band gap engineering

Meng-Ju Sher, Mark Winkler, Yu-Ting Lin, Ben Franta and Eric Mazur
Harvard University
APS March meeting, MA
2012/02/28
Intermediate-band photovoltaics

Metal-insulator transition

Deep level high concentration

Winkler et al., PRL 106, 178701 (2011)
Ertekin et al., PRL 108, 026401 (2012)
Outline

• fs-laser doping
• controlling sulfur concentrations
• optical properties
Fs-laser doping

- fs laser
- scanning mirror
- chamber filled with SF$_6$
- Si wafer
Fs-laser doping
Fs-laser doping

![Graph showing wavelength vs. absorptance for crystalline silicon and fs-laser hyperdoped Si](image-url)
Fs-laser doping

- Doped region
- ~1% sulfur

Cross-sectional TEM (F. Génin, LLNL)
Outline

• fs-laser doping

• controlling sulfur concentrations

• optical properties

Si
S
S
controlling sulfur concentrations

Si substrate

fs-laser: 800 nm, 80 fs, 2.5 kJ/m²
controlling sulfur concentrations

SF_6 pressure (Torr)

vacuum

of laser pulses

Si substrate

600 μm

1 2 4 6
controlling sulfur concentrations

Si substrate

SIMS
SF_6 100 Torr

Carlson et al., J. Physics and Chemistry of Solids 8, 81 (1959)
controlling sulfur concentrations

SIMS
4 laser pulses

Carlson et al., J. Physics and Chemistry of Solids 8, 81 (1959)
controlling sulfur concentrations

Si substrate

![Graph showing sulfur dose vs. SF\textsubscript{6} pressure](image)

- **Sulfur dose (cm-2)**
 - 10^{-6}
 - 10^{-5}
 - 10^{-4}
 - 10^{-3}
 - 10^{-2}
 - 10^{-1}
 - 10^{0}
 - 10^{1}
 - 10^{2}
 - 10^{3}
 - 10^{4}

- **SF\textsubscript{6} pressure (torr)**
 - 10^{-6}
 - 10^{-5}
 - 10^{-4}
 - 10^{-3}
 - 10^{-2}
 - 10^{-1}
 - 10^{0}
 - 10^{1}
 - 10^{2}
 - 10^{3}
 - 10^{4}
 - 10^{5}
 - 10^{6}
 - 10^{7}
 - 10^{8}
 - 10^{9}
 - 10^{10}
 - 10^{11}
 - 10^{12}
 - 10^{13}
 - 10^{14}

- **# of laser pulses**
 - 1
 - 2
 - 4
 - 6
controlling sulfur concentrations

Si substrate

SIMS

of laser pulses

sulfur dose (cm$^{-2}$)

$\approx 10^{-6}$ 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} 10^{11} 10^{12} 10^{13} 10^{14}

SF$_6$ pressure (torr)

10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} 10^{11} 10^{12} 10^{13} 10^{14}
Outline

• fs-laser doping

• controlling sulfur concentrations

• optical properties
Optical properties

fs-laser: 2.5 kJ/m² 50 pulses
SF₆ 1 & 10 Torr

Si:S

45° SEM

1 μm

Si substrate
Optical properties

\[A = 1 - T_{\text{int}} - R_{\text{int}} \]

Absorptance vs. wavelength (µm)

- Black Si
- c-Si

Si substrate
Optical properties

\[A = 1 - T_{\text{int}} - R_{\text{int}} \]

Si:Si substrate

<table>
<thead>
<tr>
<th>Wavelength (µm)</th>
<th>Absorptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

SF\(_6\) pressure (Torr)
- Black Si
- 10
- 1
- c-Si
Conclusions

• Fs-laser doping
 • light trapping surfaces
 • non-equilibrium concentrations of S in Si

• Identify parameters for controlling dopant incorporation
 • non-linear response in pressure and # of laser pulses

• IR absorption correlates with pressure of the dopant precursor
Thanks!

Questions?
scher@physics.harvard.edu
http://mazur-www.harvard.edu/