Less is more: Extreme optics with zero index

Brown University
Providence, RI, 28 September 2015
Less is more: Extreme optics with zero index

Brown University
Providence, RI, 28 September 2015

@eric__mazur
1 index 2 zero index 3 experiments
Propagation of EM wave
Propagation of EM wave

governed by wave equation

\[\nabla^2 \vec{E} - \frac{\mu \varepsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \]
Propagation of EM wave

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \varepsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$
Propagation of EM wave
governed by wave equation

\[\nabla^2 \vec{E} - \frac{\mu \varepsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \]

Solution:

\[\vec{E} = \vec{E}_0 e^{i(kx - \omega t)} \]

where

\[\frac{\omega}{k} = \frac{1}{\sqrt{\varepsilon \mu}} \frac{c}{n} = \frac{1}{n} c \]
Propagation of EM wave

governed by wave equation

\[\nabla^2 \vec{E} - \frac{\mu \varepsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \]

Solution:

\[\vec{E} = \vec{E}_0 e^{i(kx - \omega t)} \]

where

\[\frac{\omega}{k} = \frac{1}{\sqrt{\varepsilon \mu}} \quad c = \frac{1}{n} c \]

and

\[n = \sqrt{\varepsilon \mu} . \]
Propagation of EM wave

governed by wave equation

\[\nabla^2 \vec{E} - \frac{\mu \varepsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \]

Solution:

\[\vec{E} = \vec{E}_0 e^{i(\omega t - k x)} \]

where

\[\frac{\omega}{k} = \frac{1}{\sqrt{\varepsilon \mu}} \quad \frac{c}{n} = \frac{1}{\sqrt{\varepsilon \mu}} \quad \frac{1}{n} \]

and

\[n = \sqrt{\varepsilon \mu} \]

In dispersive media \(n = n(\omega) \).
Dielectric constant

Lorentz oscillator

![Graph showing dielectric constant and its components, ε', ε'', and ω.](image)
Dielectric constant
Dielectric constant

![Graph showing dielectric constant vs frequency (rad/s)]

- Frequency (rad/s)
- Dielectric constant
- Vacuum

- MW
- IR
- VIS
- UV
- X
Dielectric constant

![Graph showing the change in dielectric constant with frequency.](Image)

- **Frequency (rad/s)**: 10^6 to 10^18
- **Dielectric Constant**: 1 to 10^12
- **Regions**: Vacuum, Electronic, Microwave (MW)

Legend: MW - Microwave
Dielectric constant
Dielectric constant

- Dipolar
- Ionic
- Electronic
- Vacuum

Frequency (rad/s):
- 10^6
- 10^8
- 10^{10}
- 10^{12}
- 10^{14}
- 10^{16}
- 10^{18}
Dielectric constant

![Graph showing dielectric constant variation with frequency](image)

- **Frequency (rad/s)**
- **Dielectric constant**
 - Vacuum: 1
 - Electronic: 1
 - Ionic: 1
 - Dipolar: 1

Frequency ranges:
- **MW**
- **IR**
- **VIS**
- **UV**
- **X**
Lorentz and Drude models

The diagrams illustrate the behavior of dielectric and metal materials with respect to frequency (ω) and permittivity (ε). The permittivity is divided into real (ε') and imaginary (ε'') parts.

- **Dielectric**: The diagram shows a peak at ω_j and a dip at ω''.
- **Metal**: The diagram shows a sharp increase at ω_p.
for a strong (dielectric) resonance ε can become negative

Lorentz and Drude models
Lorentz and Drude models

valence electrons in dielectric then behave like a plasma
Lorentz and Drude models

with plasma frequency above the resonance
Lorentz and Drude models

(and far below the UV region)
Index also determined by magnetic response

\[n = \sqrt{\epsilon \mu} \]
Index also determined by magnetic response

\[n = \sqrt{\epsilon \mu} \]

and magnetic response shows similar resonances
Magnetic response

![Graph showing magnetic susceptibility vs. frequency (rad/s) with domains, nuclear, electronic, and vacuum levels.](image)
Magnetic response

but magnetic resonances occur below optical frequencies

![Graph showing magnetic response](chart.png)
Magnetic response

so, in optical regime, $\mu \approx 1$
Index of refraction

\[n = \sqrt{\varepsilon \mu} \]

Both \(\varepsilon \) and \(\mu \) are complex and their real parts can be negative.
Index of refraction

\[n = \sqrt{\varepsilon \mu} \]

Both \(\varepsilon \) and \(\mu \) are complex and their real parts can be negative.

What happens when \(\text{Re} \varepsilon \) and/or \(\text{Re} \mu \) is negative?
Write complex quantities as

\[\varepsilon = |\varepsilon| e^{i\theta} \quad \mu = |\mu| e^{i\phi} \]
Write complex quantities as

\[\varepsilon = |\varepsilon| e^{i\theta} \quad \mu = |\mu| e^{i\phi} \]
Write complex quantities as

\[\varepsilon = |\varepsilon| e^{i\theta} \quad \mu = |\mu| e^{i\phi} \]

Index

\[n = \sqrt{|\varepsilon| |\mu| e^{i(\theta+\phi)/2}} \]
Write complex quantities as

\[\varepsilon = \varepsilon | e^{i\theta} \quad \mu = \mu | e^{i\phi} \]

Index

\[n = \sqrt{\varepsilon \mu} e^{i\frac{\theta + \phi}{2}} \]
Q: Is this the only possible solution?

1. yes
2. no, there’s one more
3. there are many more
4. it depends
There is another root...
There is another root...

Can add 2π to exponent

$$e^{i(\theta+\phi)} = e^{i[\theta+\phi+2\pi]}$$
There is another root...

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\varepsilon \mu} e^{i \left(\frac{\theta+\phi}{2} + \pi \right)}$$
There is another root...

Can add 2π to exponent

\[e^{i(\theta+\phi)} = e^{i[\theta+\phi+2\pi]} \]

and so

\[n = \sqrt{|\varepsilon|/\mu} e^{i\left[\frac{\theta+\phi}{2} + \pi\right]} \]
There is another root...

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\epsilon/\mu} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi(n'+in'')}{\lambda_o} = k' + ik''$$
There is another root...

Can add 2π to exponent

$$e^{i(\theta+\phi)} = e^{i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\epsilon\mu} e^{i\left[\frac{\theta+\phi+\pi}{2}\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n'+in'')}{\lambda_o} = k' + ik''$$

and

$$E = E_o e^{i(kx-\omega t)} = E_o e^{-k''x} e^{i(k'x-\omega t)}$$
There is another root...

Can add 2π to exponent

$$e^{i(\theta+\phi)} = e^{i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\epsilon\mu} e^{i\frac{\theta+\phi+\pi}{2}}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi(n' + in'')}{\lambda_o} = k' + ik''$$

and

$$E = E_o e^{i(kx-\omega t)} = E_o e^{-k''x} e^{i(k'x-\omega t)}$$
There is another root...

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\varepsilon \mu} e^{i\left[\frac{\theta+\phi+\pi}{2}\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

and

$$E = E_o e^{i(kx-\omega t)} = E_o e^{-k''x}e^{i(k'x-\omega t)}$$
There is another root...

Can add 2π to exponent

$$e^{i(\theta+\phi)} = e^{i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\frac{\mu}{\varepsilon}} e^{i\left[\frac{\theta+\phi+\pi}{2}\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n'+in'')}{\lambda_o} = k' + ik''$$

and

$$E = E_o e^{i(kx-\omega t)} = E_o e^{-k''x} e^{i(k'x-\omega t)}$$

1 index
Q: Is this the only possible solution?

1. yes ✓
2. no, there’s one more
3. there are many more
4. it depends
To find n (passive materials):

1. Draw line that bisects ϵ and μ
2. Choose upper branch
For certain values of ϵ and μ we can get a negative $\text{Re}(n)$!
Q: Must both $\Re \epsilon < 0$ and $\Re \mu < 0$ to get a negative index?

1. yes
2. no
Q: Must both $\text{Re}\epsilon < 0$ and $\text{Re}\mu < 0$ to get a negative index?

1. yes

2. no ✅
Note: need magnetic response to achieve $n \leq 0$!
Now remember

\[k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik'' \]
Now remember

\[k = \frac{2\pi n}{\lambda_o} = \frac{2\pi(n' + in'')}{\lambda_o} = k' + ik'' \]

Spatial and temporal dependence of wave component

\[E = E_o e^{i(kx-\omega t)} = E_o e^{-k''x} e^{i(k'x-\omega t)} \]
Now remember

\[k = \frac{2\pi n}{\lambda_o} = \frac{2\pi(n' + in'')}{\lambda_o} = k' + ik'' \]

Spatial and temporal dependence of wave component

\[E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)} \]

When \(\text{Re}(n) < 0, \ k' < 0 \), and so phase velocity reversed!
When $\text{Re}(n) < 0$, $k' < 0$, and so phase velocity reversed!
When $\text{Re}(n) < 0$, $k' < 0$, and so phase velocity reversed!
When $\text{Re}(n) < 0$, $k' < 0$, and so phase velocity reversed!
classification of (non-lossy) materials
classification of (non-lossy) materials

\[\text{Re} \mu > 0 \quad \text{Re} \varepsilon > 0 \]

dielectrics

Re \varepsilon > 0 \quad \text{Re} \mu > 0
classification of (non-lossy) materials

\[
\begin{align*}
\text{Re} \varepsilon &< 0 \quad \text{Re} \mu > 0 \\
\text{Re} \varepsilon &> 0 \quad \text{Re} \mu > 0 \\
\end{align*}
\]
classification of (non-lossy) materials

\[
\begin{align*}
\text{metals} & : \Re \varepsilon < 0 \quad \Re \mu > 0 \\
\text{dielectrics} & : \Re \varepsilon > 0 \quad \Re \mu > 0
\end{align*}
\]
classification of (non-lossy) materials

- **Dielectrics**
 - \(\text{Re} \, \varepsilon > 0\)
 - \(\text{Re} \, \mu > 0\)
 - Evanescent wave
 - Propagating wave

- **Metals**
 - \(\text{Re} \, \varepsilon < 0\)
 - \(\text{Re} \, \mu > 0\)
 - Electric plasma

Index
classification of (non-lossy) materials

- **Re \(\varepsilon\) > 0, Re \(\mu\) > 0**: Dielectrics
- **Re \(\varepsilon\) < 0, Re \(\mu\) > 0**: Electric plasma, evanescent wave
- **Re \(\varepsilon\) < 0, Re \(\mu\) < 0**: Negative index
- **Re \(\varepsilon\) > 0, Re \(\mu\) > 0**: Propagating wave
classification of (non-lossy) materials

\[\text{Re} \varepsilon > 0 \quad \text{Re} \mu > 0 \]

dielectrics

\[\text{Re} \varepsilon < 0 \quad \text{Re} \mu > 0 \]

electric plasma

evanescent wave

\[\text{Re} \varepsilon > 0 \quad \text{Re} \mu > 0 \]

metal

\[\text{Re} \varepsilon < 0 \quad \text{Re} \mu < 0 \]

negative index

\[\text{Re} \varepsilon < 0 \quad \text{Re} \mu < 0 \]

reverse propagating wave

propagating wave
classification of (non-lossy) materials

- **Metals**
 - $\Re \varepsilon < 0$, $\Re \mu > 0$
 - Electric plasma
 - Evanescent wave

- **Dielectrics**
 - $\Re \varepsilon > 0$, $\Re \mu > 0$
 - Propagating wave

- **Negative Index**
 - $\Re \varepsilon < 0$, $\Re \mu < 0$
 - Magnetic plasma
 - Reverse propagating wave

- (Not in optical regime)
 - $\Re \varepsilon > 0$, $\Re \mu < 0$
 - Evanescent wave
common materials very limited

- Re $\varepsilon < 0$ Re$\mu > 0$
 - electric plasma
 - evanescent wave
- Re $\epsilon > 0$ Re$\mu > 0$
 - propagating wave
- Re $\epsilon < 0$ Re$\mu < 0$
 - magnetic plasma
 - reverse propagating wave
- Re $\epsilon > 0$ Re$\mu < 0$
 - evanescent wave

(not in optical regime)
common materials very limited

limited by diffraction

 metals
 Re ε < 0 Reμ > 0
 electric plasma
 evanescent wave

 Re ε > 0 Reμ > 0
 dielectrics
 propagating wave

 magnetic plasma
 reverse propagating wave
 evanescent wave
 Re ε < 0 Reμ < 0
 negative index

 Re ε > 0 Reμ < 0
 (not in optical regime)
common materials very limited

lossy & no propagation

1 index
common materials very limited

\[\Re \varepsilon < 0 \quad \Re \mu > 0 \]
- electric plasma
- evanescent wave

\[\Re \varepsilon > 0 \quad \Re \mu > 0 \]
- propagating wave

\[\Re \varepsilon < 0 \quad \Re \mu < 0 \]
- reverse propagating wave
- negative index

\[\Re \varepsilon > 0 \quad \Re \mu < 0 \]
- magnetic plasma
- evanescent wave

(metals)

(magnetic plasma)

(superlensing but...)

(2 index)

(not in optical regime)
common materials very limited

we’re stuck here!
What happens on the axes?

- **Re $\varepsilon < 0$ Re$\mu > 0$**
 - Electric plasma
 - Evanescent wave
 - Metals

- **Re $\varepsilon > 0$ Re$\mu > 0$**
 - Propagating wave
 - Dielectrics

- **Re $\varepsilon < 0$ Re$\mu < 0$**
 - Magnetic plasma
 - Reverse propagating wave
 - Negative index

- **Re $\varepsilon > 0$ Re$\mu < 0$**
 - Evanescent wave
 - (Not in optical regime)
what if we let $\varepsilon = 0$?

- **metals**
 - $\Re \varepsilon < 0$, $\Re \mu > 0$
 - electric plasma
 - evanescent wave

- **dielectrics**
 - $\Re \varepsilon > 0$, $\Re \mu > 0$
 - propagating wave

- **negative index**
 - $\Re \varepsilon < 0$, $\Re \mu < 0$

- **magnetic plasma**
 - $\Re \varepsilon > 0$, $\Re \mu < 0$
 - reverse propagating wave
 - evanescent wave

(not in optical regime)
what if we let $\varepsilon = 0$?

if $\varepsilon = 0$, then $n = 0$!

1 index

2 zero index
Q: If $n = 0$, which of the following is true?

1. the frequency goes to zero.
2. the phase velocity becomes infinite.
3. both of the above.
4. neither of the above.
wave equation

\[\nabla^2 \vec{E} - \frac{\mu \varepsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \]

solution

\[\vec{E} = \vec{E}_0 e^{i(kx - \omega t)} \]

where

\[\frac{\omega}{k} = \frac{1}{\sqrt{\varepsilon \mu}} \quad \frac{c}{n} = \frac{1}{c} \]
wave equation

\[\nabla^2 \vec{E} - \frac{\mu}{\epsilon} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \]

solution

\[\vec{E} = \vec{E}_0 e^{i(kx - \omega t)} \]

where

\[\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon \mu}} \quad \frac{c}{n} = \frac{1}{c} \]

1 index 2 zero index
wave equation

\[\nabla^2 \vec{E} - \frac{\mu}{\varepsilon} \dot{\vec{E}} = 0 \]

solution

\[\vec{E} = \vec{E}_0 e^{i(kx - \omega t)} \quad \rightarrow \quad \vec{E} = \vec{E}_0 e^{-i\omega t} \]

where

\[\frac{\omega}{k} = \frac{1}{\sqrt{\varepsilon \mu}} \quad c = \frac{1}{n} \quad c \]

1 \hspace{1cm} \text{index} \hspace{1cm} 2 \hspace{1cm} \text{zero index}
wave equation

\[\nabla^2 \vec{E} - \frac{\mu}{\varepsilon} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \]

solution

\[\vec{E} = \vec{E}_0 e^{i(kx - \omega t)} \quad \rightarrow \quad \vec{E} = \vec{E}_0 e^{-i\omega t} \]

where

\[\frac{\omega}{k} = \frac{1}{\sqrt{\varepsilon \mu}} c = \frac{1}{n} c \quad \rightarrow \quad \infty \]
Q: If \(n = 0 \), which of the following is true?

1. the frequency goes to zero.
2. the phase velocity becomes infinite. ✓
3. both of the above.
4. neither of the above.
$0 < n < 1$
$n = 0$
$n < 0$
$n = 0$
$n = 0$
\[n = 0 \]
“tunneling with infinite decay length”

\[n = 0 \]
how?

\[n = \sqrt{\varepsilon \mu} \]
how?

\[n = \sqrt{\varepsilon \mu} \]

but \(\varepsilon \) and \(\mu \) also determine reflectivity

\[r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \]

\text{1 index} \quad \text{2 zero index}
how?

\[n = \sqrt{\varepsilon \mu} \]

but \(\varepsilon \) and \(\mu \) also determine reflectivity

\[r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \]

where

\[Z = \sqrt{\frac{\mu}{\varepsilon}} \]
how?

but ε and μ also determine reflectivity

$$n = \sqrt{\varepsilon \mu} \to 0$$

$$\varepsilon \to 0$$

where

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

1 index

2 zero index
how?

\[\varepsilon \to 0 \quad n = \sqrt{\varepsilon \mu} \to 0 \]

but \(\varepsilon \) and \(\mu \) also determine reflectivity

\[r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \]

where

\[Z = \sqrt{\frac{\mu}{\varepsilon}} \to \infty \]

1 index

2 zero index
but ε and μ also determine reflectivity

$$r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \rightarrow 1$$

where

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \rightarrow \infty$$
how?

\[\mu \to 0 \quad n = \sqrt{\varepsilon \mu} \to 0 \]

but \(\varepsilon \) and \(\mu \) also determine reflectivity

\[r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \]

where

\[Z = \sqrt{\frac{\mu}{\varepsilon}} \]
how?

\[\mu \to 0 \quad n = \sqrt{\varepsilon \mu} \to 0 \]

but \(\varepsilon \) and \(\mu \) also determine reflectivity

\[r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \]

where

\[Z = \sqrt{\frac{\mu}{\varepsilon}} \to 0 \]
how?

\[\mu \to 0 \quad \quad \quad n = \sqrt{\varepsilon \mu} \to 0 \]

but \(\varepsilon \) and \(\mu \) also determine reflectivity

\[r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \to -1 \]

where

\[Z = \sqrt{\frac{\mu}{\varepsilon}} \to 0 \]

index \#1 \quad zero index \#2
how?

\[\varepsilon, \mu \to 0 \]

\[n = \sqrt{\varepsilon \mu} \to 0 \]

but \(\varepsilon \) and \(\mu \) also determine reflectivity

\[r = \frac{Z_2 - Z_1}{Z_2 + Z_1} \]

where

\[Z = \sqrt{\frac{\mu}{\varepsilon}} \quad \text{finite!} \]

\(1 \) index \hspace{1cm} \(2 \) zero index
but $\mu \neq 1$ requires a magnetic response!
Engineering a magnetic response
Engineering a magnetic response

use array of dielectric rods
Engineering a magnetic response

incident electromagnetic wave ($\lambda_{\text{eff}} \approx d$)
Engineering a magnetic response produces an electric response…
Engineering a magnetic response

... but different electric fields front and back...
Engineering a magnetic response

...induce different polarizations on opposite sides...
Engineering a magnetic response

...causing a current loop...
Engineering a magnetic response

...which, in turn, produces an induced magnetic field
Engineering a magnetic response

adjust design so electrical and magnetic resonances coincide
Engineering a magnetic response

adjustable parameters

1 index 2 zero index 3 experiments
Engineering a magnetic response

adjustable parameters

d

1 index 2 zero index 3 experiments
Engineering a magnetic response

adjustable parameters

\[d \]
Engineering a magnetic response

adjustable parameters

\[d \quad a \]
Engineering a magnetic response

adjustable parameters

\[d \quad a \quad n \]

1 index 2 zero index 3 experiments
The diagram shows the relationship between the frequency \(\omega a / 2\pi c \) and the real parts of the effective relative permittivity \(\text{Re}(\varepsilon_r^{\text{eff}}) \) and effective relative permeability \(\text{Re}(\mu_r^{\text{eff}}) \). The graph plots these values against a frequency range of 0.40 to 0.50.

1. **Index**
2. **Zero Index**
3. **Experiments**
Frequency ($\omega a/2\pi c$)

Refractive index $\text{Re}(n_{\text{eff}})$

Impedance $\text{Re}(Z_{\text{eff}})$

0.40 0.42 0.44 0.46 0.48 0.50

/-cap0.6/-cap0.4/-cap0.2

0 0.2 0.4

/-cap2/-cap4

0 0

/-cap2/-cap4

1 index

2 zero index

3 experiments
How to fabricate?
On-chip zero-index fabrication
On-chip zero-index fabrication

Si

SiO₂

1 index
2 zero index
3 experiments
On-chip zero-index fabrication

1 index

2 zero index

3 experiments
On-chip zero-index fabrication

1. Index
2. Zero index
3. Experiments
On-chip zero-index fabrication

1. Index
2. Zero index
3. Experiments
On-chip zero-index fabrication

1 index
2 zero index
3 experiments
1 index
2 zero index
3 experiments
index zero index experiments
1 index 2 zero index 3 experiments

500 nm
index zero index experiments
On-chip zero-index prism
On-chip zero-index prism

1. index
2. zero index
3. experiments
On-chip zero-index prism
On-chip zero-index prism
On-chip zero-index prism

1 index
2 zero index
3 experiments
On-chip zero-index prism
On-chip zero-index prism

1. index
2. zero index
3. experiments
On-chip zero-index prism

1 index 2 zero index 3 experiments
On-chip zero-index prism

1. index
2. zero index
3. experiments
1 index
2 zero index
3 experiments
1. index
2. zero index
3. experiments
SU8 slab waveguide

prism

Si waveguide

1 index 2 zero index 3 experiments
at design wavelength (1590 nm)
below design wavelength (1530 nm)
above design wavelength (1650 nm)
On-chip zero-index prism

1 index 2 zero index 3 experiments
50 µm

λ = 1570 nm

1 index

2 zero index

3 experiments
50 µm = 1570 nm

1. index
2. zero index
3. experiments
50 µm

$\lambda = 1570 \text{ nm}$

1. index
2. zero index
3. experiments
$50 \, \mu m$ = 1570 nm

1. index
2. zero index
3. experiments
Wavelength dependence of refraction angle

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Refractive Angle α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1480</td>
<td>-45°</td>
</tr>
<tr>
<td>1520</td>
<td>-30°</td>
</tr>
<tr>
<td>1560</td>
<td>-15°</td>
</tr>
<tr>
<td>1600</td>
<td>0°</td>
</tr>
<tr>
<td>1640</td>
<td>15°</td>
</tr>
<tr>
<td>1680</td>
<td>30°</td>
</tr>
</tbody>
</table>

1 index 2 zero index 3 experiments
Wavelength dependence of refraction angle

![Graph showing wavelength dependence of refraction angle.]
Wavelength dependence of refraction angle

Index 2 Zero Index 3 Experiments
Wavelength dependence of refraction angle

1. index
2. zero index
3. experiments
Wavelength dependence of index

Refractive index

Wavelength (nm)

1 index
2 zero index
3 experiments
Wavelength dependence of index

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Refractive index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1480</td>
<td>0.2</td>
</tr>
<tr>
<td>1520</td>
<td>0</td>
</tr>
<tr>
<td>1560</td>
<td>-0.2</td>
</tr>
<tr>
<td>1600</td>
<td>-0.4</td>
</tr>
<tr>
<td>1640</td>
<td>-0.6</td>
</tr>
<tr>
<td>1680</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

1. Index
2. Zero index
3. Experiments

Experiment vs Simulation

Refractive index vs Wavelength (nm)
More extreme optics

• suppressing losses
• beam steering & supercoupling
• nonlinear optics
• quantum optics
• on-chip zero-index material

• uniform field inside material (infinite wavelength)

• many exciting applications ahead!
Appearing in November!

1 index
2 zero index
3 experiments
The Team: Yang Li, Shota Kita, Orad Reshef, Philip Muñoz, Daryl Vulis, Marko Lončar

Funding: National Science Foundation

for a copy of this presentation:

http://ericmazur.com

Follow me! eric_mazur