Design, Simulation and Fabrication of Plasmonic Pyramid Substrates for Cell Transfection

Marinus Huber1,3, Daryl I. Vulis1, Nabiha Saklayen1, Étienne Boulais4,5, Sébastien Courvoisier2, Jean-Pierre Wolf2, Eric Mazur1

1Harvard School of Engineering and Applied Sciences (United States)
2Univ. de Genève (Switzerland)
3Ludwig-Maximilians-Universität München (Germany)
4Massachusetts Institute of Technology (United States)
5École Polytechnique de Montréal
Nanoparticles attach to the cell membrane

Irradiating AuNPs near cells creates pores

Irradiating AuNPs near cells creates pores

External molecules can enter the cell

External molecules can enter the cell

Goal: Plasmonic effect that creates pores without particle residue

External molecules can enter the cell

New approach: Use nanostructured gold surfaces instead of gold nanoparticles

Design aspects

1. Easy to Fabricate/Large-Scale-Fabrication
2. Adjustable
3. Strong Plasmonic Effect for Efficient and Localized Poration
4. Robust/Stable
Proposed structure

Gold Pyramids with Nano-Apertures
Experimental procedure

Cells growing on the Plasmonic Substrate

ufs-laser irradiation

Gene Expression
Outline

Fabrication

Simulation and Characterization
Fabrication

Chromium deposition

Si (100)
Fabrication

E-Beam Lithography
or Photolithography

Negative squares
of Cr thin films
Si (100) Inverted pyramids Fabrication

KOH Anisotropic etching

Inverted pyramids
Fabrication

Chromium etch

Template
Fabrication

Glass coverslip
UV-cured glue
Fabrication

Template-stripping
Fabrication

Tipless pyramids
Fabricated substrates
Large-scale fabrication with photolithography

Aperture: 300nm
Baseline: 2200nm
Separation: 1400nm
Total Area: \(\approx 2\text{cm}^2\)
Different aspect ratios
Design aspects

1. Easy to Fabricate/Large-Scale-Fabrication ✓

2. Adjustable ✓

3. Strong Plasmonic Effect for Efficient and Localized Poration

4. Robust/Stable
Fabrication

Simulation and Characterization
Ultra-short laser excitation of plasmonic structures

- Plasmon Oscillation
 - Enhanced Near-Field
 - Effect on Environment:
 - Plasma Generation
 - Chemical Damage
 - Bond Cutting
 - Thermalized Phonons
 - Effect on Structure:
 - Temperature Increase
 - Melting
 - Ablation
Simulations: Field Enhancement

Optimization for 800nm excitation

Geometrical Parameters to Explore:
- Baselength
- Aperture
- Separation

Figure of Merit:
Average Field Enhancement
5nm above the Aperture

\[
\frac{\int |E| ds}{\int ds |E_0|} = \frac{\bar{E}}{E_0}
\]
Optimization: Field Enhancement
Optimization: Field Enhancement

Geometrical Parameter Space for high Field Enhancement
Experiments vs Simulation
Experiments vs Simulation

[Image showing two graphs side by side: one labeled NSOM and the other FEM, both with color scales and labels for Photon Count and E/E_0]
Experiments vs Simulation
Simulations: Field Enhancement

Low-absorptance regime to avoid thermal damage of the structure
Ultra-short laser excitation of plasmonic structures

Plasmon Oscillation

Enhanced Near-Field

Effect on Environment:
- Plasma Generation
- Chemical Damage
- Bond Cutting

Thermalized Phonons

Effect on Structure:
- Temperature Increase
- Melting
- Ablation
Plasma-mediated bubble formation

Plasmonic enhancement

Plasma

Nanobubbles
Plasma-mediated bubble formation

Electron Density:
\[n_e > n_{\text{crit}} = 10^{21}\text{cm}^{-3} \]

Energy Density:
\[u_e > u_{\text{crit}} = 551\text{ Jcm}^{-3} \]

Critical Temperature for Bubble Formation:
\[T_w > 0.85 x T_{\text{crit}} = 550\text{ K} \]

Melting Temperature of Bulk Gold:
\[T_m = 1337\text{ K} \]

Plasma Formation

Wavelength: 800nm
Pulse length: 100fs
Fluence: 10mJ/cm²
Baselength: 1800nm
Aperture: 300nm
Gold Layer: 50nm
Plasma Formation

Wavelength: 800nm
Pulse length: 100fs
Fluence: 10mJ/cm²
Baselength: 1800nm
Aperture: 300nm
Gold Layer: 50nm
Plasma Formation

![Graph showing electron density over time with a pulse and critical electron density markers.](image-url)
Plasma Formation

![Graph showing electron density as a function of fluence. The x-axis represents fluence in mJ/cm², ranging from 0 to 20. The y-axis represents electron density in 1/cm³, ranging from 10^17 to 10^22. There are data points indicating critical electron density.](image)
Plasma Formation

Threshold fluence: 3.5mJ/cm2

Electron Density [1/cm3] vs. Fluence [mJ/cm2]

Critical Electron Density

Threshold fluence: 3.5mJ/cm2
Plasma Formation

Critical Energy Density

Energy Density $[J/m^3]$

Fluence $[mJ/cm^2]$
Plasma Formation

Threshold fluence: 3.5 mJ/cm²

Energy Density [J/m³]

Fluence [mJ/cm²]

Critical Energy Density
Plasma Formation

![Graph showing the relationship between water temperature (K) and fluence (mJ/cm²) with a critical temperature line. The graph indicates an increase in water temperature with fluence.](graph.png)
Plasma Formation

Threshold fluence: 4.5 mJ/cm2

Fluence [mJ/cm2]

Critical Temperature

Water Temperature [K]

Threshold fluence: 4.5 mJ/cm2
Plasma Formation

Fluence [mJ/cm2] vs. Gold Temperature [K]

Melting Temperature of Bulk Gold
Fluence-Range for Bubble Formation without Melting the Structure
Design Aspects

1. Easy to Fabricate/Large-Scale-Fabrication ✓

2. Adjustable ✓

3. Strong Plasmonic Effect for Efficient and Localized Poration ✓

4. Robust/Stable (Theoretical) ✓
Acknowledgements

Special thanks to the Mazur group

Eric Mazur
Harvard University

Daryl Vulis
Nabiha Saklayen
Marinna Madrid

Valeria Nuzzo
ECE PARIS Ecole d'Ingénieurs

Sebastien Courvoisier
University of Geneva

Etienne Boulais
MIT

Jun Chen
Nanjing University of Science and Technology

Michel Meunier
Polytechnique Montréal