Creating the Ultimate Flipped Classroom (and never looking back)
Creating the Ultimate Flipped Classroom (and never looking back)

@eric_mazur

BLC 2016
Boston, MA, 20 July 2016
Buoyancy
Archimedes’ Principle
Archimedes’ Principle

An object submerged either fully or partially in a fluid experiences an upward buoyant force the magnitude of which is equal to the magnitude of the force of gravity exerted on the fluid displaced by the object. The volume of displaced fluid is equal to the volume of the submerged portion of the object.
Archimedes’ Principle
Archimedes’ Principle
Archimedes’ Principle

“displaced water”

questions!
A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond.
A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond. After the boulder sinks to the bottom of the pond, the level of the water in the pond is

1. higher than,
2. the same as,
3. lower than it was when the boulder was in the boat.
A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond. After the boulder sinks to the bottom of the pond, the level of the water in the pond is

1. higher than,
2. the same as,
3. lower than it was when the boulder was in the boat.
Before I tell you the answer, let’s analyze what happened.
Before I tell you the answer, let’s analyze what happened.

You…
Before I tell you the answer, let’s analyze what happened.

You…

1. made a commitment
Before I tell you the answer, let’s analyze what happened.

You…

1. made a commitment
2. externalized your answer
Before I tell you the answer, let’s analyze what happened.

You…

1. made a commitment
2. externalized your answer
3. moved from the answer/fact to reasoning
Before I tell you the answer, let’s analyze what happened.

You...

1. made a commitment
2. externalized your answer
3. moved from the answer/fact to reasoning
4. became emotionally invested in the learning process
A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond. After the boulder sinks to the bottom of the pond, the level of the water in the pond is

1. higher than,
2. the same as,
3. lower than it was when the boulder was in the boat.
A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond. After the boulder sinks to the bottom of the pond, the level of the water in the pond is

1. higher than
2. the same as
3. lower than it was when the boulder was in the boat. ✅
remember: amount of displaced water

displaced water
remember: amount of displaced water

displaced water = weight of rock
remember: amount of displaced water

displaced water = weight of rock

= volume of rock
remember: amount of displaced water

\[\text{displaced water} = \frac{\text{weight of rock}}{\text{volume of rock}} \]
Higher learning gains
Higher learning gains

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peer instruction</td>
<td></td>
<td>80</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- lecture
- peer instruction
Higher learning gains
Better retention
CLASS
1st exposure

ROOM
deeper understanding
CLASS
1st exposure

ROOM
deeper understanding

ROOM
1st exposure
deeper understanding

CLASS
CLASS
1st exposure
ROOM
deeper understanding

ROOM
1st exposure
CLASS
deeper understanding
how to effectively transfer information outside classroom?
but...
• transfer pace set by video
• viewer passive
• viewing/attention tanks as time passes
• isolated/individual experience
we’re simply moving this outside classroom!
- transfer pace set by reader
- viewer active
but...
isolated/individual experience &
no real accountability
want:
every student prepared for every class
want:

every student prepared for every class

(without additional instructor effort)
Solution
turn out-of-class component also into a social interaction!
Perusall every student prepared for every class
76

CHAPTER 4 MOMENTUM

In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of ice sliding down a wooden surface. Initially, it slides at a certain constant speed for some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

The slowing down of a block of ice is an example of friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decreases as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.2 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decreases as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.
log in through social network
CHAPTER 4 MOMENTUM

In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decreases as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.2 Low-friction track and carts used in the experiments described in this chapter.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts with low-friction bearings on an ordinary track. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.
see who is online
In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slide some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.1 Velocity-versus-time graph for a wooden block sliding on three different surfaces. The rougher the surface, the more quickly the velocity decreases.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts with low-friction bearings on an ordinary track. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart’s position at various instants, and from that information determine its speed and acceleration.

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on due to friction object encounters during the graph, the velocity decreases as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.1 Velocity-versus-time graph for a wooden block sliding on three different surfaces. The rougher the surface, the more quickly the velocity decreases.

Figure 4.2 Low-friction track and carts used in the experiments described in this chapter.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This can be most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
n the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: a hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows that the velocity decreases over time. The reason for this decrease is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides. For ice is hardly observable. The block slides easily because there is very little friction between the two surfaces. The effect of friction is to bring two objects together with respect to each other—in this case the wood and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.1 Velocity-versus-time graph for a wooden block sliding on three different surfaces. The softer the surface, the more quickly the velocity decreases.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to slide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can slide, with friction reduced to a minimum. The track is made up of low-friction bearings on an ordinary track. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart’s position at various instants, and from that information determine its speed and acceleration.

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration greatest?
In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.1 Velocity-versus-time graph for a wooden block sliding on three different surfaces. The rougher the surface, the more quickly the velocity decreases.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts with low-friction bearings on an ordinary track. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart's position at various instants, and from that information determine its speed and acceleration.

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.2 Low-friction track and carts used in the experiments described in this chapter.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts with low-friction bearings on an ordinary track. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down appreciably.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart's position at various instants, and from that information determine its speed and acceleration.

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
action of the force and the axis of rotation. So, the torque caused by a force exerted on an object is the product of the magnitude of the force and its lever arm distance. It can be written equivalently as rF_1 and as rF_2.

Like other rotational quantities, torque carries a sign that depends on the choice of direction for increasing θ. In Figure 12.4, for example, the torque caused by F_1 about the pivot tends to rotate the rod in the direction of increasing θ and so is positive; the torque caused by F_2 is negative. The sum of the two torques about the pivot is then $r_1F_1 + (-r_2F_2)$. As we've seen, the two torques are equal in magnitude when the rod is balanced, and so the sum of the torques is zero. When the sum of the torques is not zero, the rod's rotational acceleration is nonzero, and so its rotational velocity and angular momentum change.

In the situations depicted in Figures 12.4 and 12.5 we used the pivot to calculate the lever arm distances. This is a natural choice because that is the point about which the object under consideration is free to rotate. However, torques also play a role for stationary objects that are suspended or supported at several different points and that are not free to rotate.

Exercise 12.1 shows that the sum of the torques about the left end of the rod is zero, just like the sum of the torques about the pivot. You can repeat the calculation for the torques about the right end of the rod or any other point, and each time you will find that the sum of the torques is zero. The reason is that the rod is not rotating about any point, and so the sum of the torques must be zero about any point. In general we can say:

For a stationary object, the sum of the torques is zero.

For a stationary object we can choose any reference point we like to calculate torques. It pays to choose a reference point that simplifies the calculation. As you have seen, we do not need to consider any force that is exerted at the reference point. So, by putting the reference point at the point of application of a force, we can eliminate that force from the calculation.

12.2 In the situation depicted in Figure 12.2a, you must...
The lever arm distances must now be determined relative to the left end of the rod. The lever arm distance of force F_1 to this point is zero, and so the torque caused by that force about the left end of the rod is zero. If I choose counterclockwise as the positive direction of rotation, F_1 causes a negative torque about the left end of the rod; the force F_{pr} exerted by the pivot causes a positive torque about the left end of the rod. The lever arm distance of F_1 about the left end of the rod is r_1, and that of F_{pr} is r_l. Because the rod is at rest, the magnitude of the force exerted by the pivot is equal to the sum of the forces F_1 and F_2. Taking into account the signs of the torques, we find that the sum of the torques about the left end of the rod is $r_1 (F_1 + F_2) - (r_1 + r_2) F_2 = r_1 F_1 - r_2 F_2$. This is the same result we obtained for the torques about the pivot, and so the sum of the torques about the left end is zero.

Exercise 12.1 shows that the sum of the torques about the left end of the rod is zero, just like the sum of the torques about the pivot. You can repeat the calculation for the torques about the right end of the rod or any other point, and each time you will find that the sum of the torques is zero. The reason is that the rod is not rotating about any point, and so the sum of the torques must be zero about any point. In general we can say:

For a stationary object, the sum of the torques is zero.

For a stationary object we can choose any reference point we like to calculate torques. It pays to choose a reference point that simplifies the calculation. As you have seen, we do not need to consider any force that is exerted at the reference point. So, by putting the reference point at the point of application of a force, we can eliminate that force from the calculation.
I don’t understand how this combination of factors tells you anything about direction? Aren’t magnitude and lever arm distance both scalar quantities? It seems like we would need to know some sort of direction to calculate torque.

I think you may be able to think about the direction separately. So, after multiplying this magnitude and distance, you can attach a sign to the torque based on the defined parameters of the system. In the following paragraph, they start to explain how to choose this direction.

This is a great question. To further elaborate on this, we can think of this in terms of the Torque equation. The equation for torque is $\tau = r \times F$, with r being the level arm distance and F being force. We know that force is a vector vector from previous chapters, and in regards to "r" it can also be thought of as the radial vector. What this means is that this distance from the pivot points from the axis of rotation to the point where the force acts. In as previously mentioned, there is a general convention (the right-hand rule) that is used to determine the direction which happens to be perpendicular to both the radius from the axis and to the force.
how to get students to participate?
use combination of intrinsic and extrinsic motivation drivers
rubric-based assessment
rubric-based assessment

- quality (thoughtful reading & interpretation)
rubric-based assessment

• quality (thoughtful reading & interpretation)

• quantity (minimum 10)
rubric-based assessment

- quality (thoughtful reading & interpretation)
- quantity (minimum 10)
- timeliness (before class)
rubric-based assessment

- quality (thoughtful reading & interpretation)
- quantity (minimum 10)
- timeliness (before class)
- distribution (not clustered)
rubric-based assessment

- quality (thoughtful reading & interpretation)
- quantity (minimum 10)
- timeliness (before class)
- distribution (not clustered)

over 20,000 annotations!
rubric-based assessment

- quality (thoughtful reading & interpretation)
- quantity (minimum 10)
- timeliness (before class)
- distribution (not clustered)

how do you process all of that??
rubric-based assessment

- quality (thoughtful reading & interpretation)
- quantity (minimum 10)
- timeliness (before class)
- distribution (not clustered)

How do you process all of that??

fully automated assessment
fully automated assessment

- specialized machine learning algorithm
- assesses intellectual content
- exceeds intercoder reliability
connect pre-class and in-class activities
Confusion report for Chapter 24

right hand rule (11 questions)

- **JB** Can someone in simpler terms explain the right-hand rule?
- **WJ** Is there another way, besides the right hand rule, to find the direction of the magnetic field with a current?
- **SB** Using the right hand rule, I believe the answer is D. Is that correct?

direction magnetic field (8 questions)

- **CP** Why is it that the magnet field points away from the north pole and towards the south pole? When on the previous page it stated that the direction of the magnetic field is the direction that the north pole of a compass needle points.
- **AB** How can you determine which direction the magnetic field will point towards?
- **KH** So whichever way the north pole faces is the direction of the magnetic field but that doesn't always mean its pointing true north?

earth magnetic field (6 questions)

- **CP** Does that mean that the compass will be distracted from the Earth’s magnetic field and use the magnetic field that the current of the wire gives off?
Intrinsic:

• social interaction
motivating factors

Intrinsic:

• social interaction

• tie-in to in-class activity
motivating factors

Intrinsic:
- social interaction
- tie-in to in-class activity

Extrinsic:
- assessment (fully automated)
close to 95%!
every student prepared for every class
Benefits

- virtually 100% completion of assignments
- improved use of class time
Benefits

• virtually 100% completion of assignments
• improved use of class time

all at no cost & without additional instructor effort!
More details: 11:45–12:50 today
Grand Ballroom A, Mezzanine
More details: 11:45–12:50 today
Grand Ballroom A, Mezzanine

• Setting up a course
• Scoring and grades
• Adopting textbooks
• LMS integration
• Best practices
More details: 11:45–12:50 today
Grand Ballroom A, Mezzanine

• Setting up a course
• Scoring and grades
• Adopting textbooks
• LMS integration
• Best practices

BRING YOUR LAPTOP!
Education is not just about:

- transferring information
- getting students to do what we do
Education is not just about:

• transferring information

• getting students to do what we do

active participation/social interaction a must!
for a copy of this presentation

ericmazur.com

Follow me! @eric_mazur