Getting every student prepared for every class

@eric_mazur

Zürcher Hochschule für Angewandte Wissenschaften
Winterthur, Switzerland, 18 January 2017
Getting every student prepared for every class

Program

9:30 Introduction to Perusall
10:15 Reading assignment (read, annotate, respond)
10:45 Coffee
11:00 Demonstration of Gradebook and Confusion Report
11:20 Discussion
12:00 Adjourn

Please make an account at http://app.perusall.com
1st exposure deeper understanding
CLASS

1st exposure

ROOM
deeper understanding

ROOM

1st exposure
deeper understanding

CLASS
1st exposure deeper understanding

ROOM

CLASS

1st exposure
deeper understanding
CLASS
1st exposure
ROOM
deeper understanding
ROOM
1st exposure
CLASS
deeper understanding
how to effectively transfer information outside classroom?
• transfer pace set by video
• viewer passive
• viewing/attention tanks as time passes
• isolated/individual experience
we’re simply moving this outside classroom!
• transfer pace set by reader
• viewer active
but...
isolated/individual experience &
no real accountability
want:

every student prepared for every class
want:
every student prepared for every class
(without additional instructor effort)
Solution

turn out-of-class component also into a social interaction!
Perusall helps every student prepared for every class.
In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block will slide very far. If the surfaces are rough, the frictional force slows the block down rapidly, and you are likely to be surprised by how quickly it comes to a stop. A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.1 Velocity-versus-time graph for a wooden block sliding on three different surfaces. The rougher the surface, the more quickly the velocity decreases.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This may easily accomplished by using an air cushion. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart’s position at various instants, and from that information determine its speed and acceleration.

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
log in through social network
76 CHAPTER 4 MOMENTUM

In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.1 Velocity-versus-time graph for a wooden block sliding on three different surfaces. The rougher the surface, the more quickly the velocity decreases.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is a totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts with low-friction bearings on an ordinary track. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart's position at various instants, and from that information determine its speed and acceleration.

4.1 Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
76
CHAPTER 4 MOMENTUM

In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.1 Velocity-versus-time graph for a wooden block sliding on three different surfaces. The rougher the surface, the more quickly the velocity decreases.

Figure 4.2 Low-friction track and carts used in the experiments described in this chapter.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts with low-friction bearings on an ordinary track. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart's position at various instants, and from that information determine its speed and acceleration.

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
CHAPTER 4 MOMENTUM

In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—object encoun during the in graph, the velocity decreases as the block slides down; it is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.1 Velocity-versus-time graph for a wooden block sliding on three different surfaces. The rougher the surface, the more quickly the velocity decreases.

Figure 4.2 Low-friction track and carts used in the experiments described in this chapter.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts with low-friction bearings on an ordinary track. Figure 4.2

In the absence of friction, objects moving along a horizontal track keep moving without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart’s position at various instants, and from that information determine its speed and acceleration.

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity-versus-time graph for a wooden block sliding on three different surfaces. The velocity decreases as the block slides, but the effect is more noticeable on ice than on wax. The block slides easily on ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects together with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track negligible. Such a track is called a low-friction track, and it is shown in Figure 4.2.

In the absence of friction, objects moving along a horizontal track keep moving without slowing down appreciably. In other words:

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart's position at various instants, and from that information determine its speed and acceleration.
CHAPTER 4 \hspace{10pt} MOMENTUM

In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts with low-friction bearings on an ordinary track. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart's position at various instants, and from that information determine its speed and acceleration.

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
CHAPTER 4 MOMENTUM

In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.1 Velocity-versus-time graph for a wooden block sliding on three different surfaces. The rougher the surface, the more quickly the velocity decreases.
CHAPTER 4 MOMENTUM

In the preceding two chapters, we developed a mathematical framework for describing motion along a straight line. In this chapter, we continue our study of motion by investigating inertia, a property of objects that affects their motion. The experiments we carry out in studying inertia lead us to discover one of the most fundamental laws in physics—conservation of momentum.

4.1 Friction

Picture a block of wood sitting motionless on a smooth wooden surface. If you give the block a shove, it slides some distance but eventually comes to rest. Depending on the smoothness of the block and the smoothness of the wooden surface, this stopping may happen sooner or it may happen later. If the two surfaces in contact are very smooth and slippery, the block slides for a longer time interval than if the surfaces are rough or sticky. This you know from everyday experience: A hockey puck slides easily on ice but not on a rough road.

Figure 4.1 shows how the velocity of a wooden block decreases on three different surfaces. The slowing down is due to friction—the resistance to motion that one surface or object encounters when moving over another. Notice that, during the interval covered by the velocity-versus-time graph, the velocity decrease as the block slides over ice is hardly observable. The block slides easily over ice because there is very little friction between the two surfaces. The effect of friction is to bring two objects to rest with respect to each other—in this case the wooden block and the surface it is sliding on. The less friction there is, the longer it takes for the block to come to rest.

Figure 4.2 Low-friction track and carts used in the experiments described in this chapter.

You may wonder whether it is possible to make surfaces that have no friction at all, such that an object, once given a shove, continues to glide forever. There is no totally frictionless surface over which objects slide forever, but there are ways to minimize friction. You can, for instance, float an object on a cushion of air. This is most easily accomplished with a low-friction track—a track whose surface is dotted with little holes through which pressurized air blows. The air serves as a cushion on which a conveniently shaped object can float, with friction between the object and the track all but eliminated. Alternatively, one can use wheeled carts with low-friction bearings on an ordinary track. Figure 4.2 shows low-friction carts you may have encountered in your lab or class. Although there is still some friction both for low-friction tracks and for the track shown in Figure 4.2, this friction is so small that it can be ignored during an experiment. For example, if the track in Figure 4.2 is horizontal, carts move along its length without slowing down appreciably. In other words:

In the absence of friction, objects moving along a horizontal track keep moving without slowing down.

Another advantage of using such carts is that the track constrains the motion to being along a straight line. We can then use a high-speed camera to record the cart’s position at various instants, and from that information determine its speed and acceleration.

4.1 (a) Are the accelerations of the motions shown in Figure 4.1 constant? (b) For which surface is the acceleration largest in magnitude?
action of the force and the axis of rotation. So, the torque caused by a force exerted on an object is the product of the magnitude of the force and its lever arm distance. It can be written equivalently as rF_2 and as r_2F.

Like other rotational quantities, torque carries a sign that depends on the choice of direction for increasing θ. In Figure 12.4, for example, the torque caused by F_1 about the pivot tends to rotate the rod in the direction of increasing θ and so is positive; the torque caused by F_2 is negative. The sum of the two torques about the pivot is then $r_1F_1 + (-r_2F_2)$. As we've seen, the two torques are equal in magnitude when the rod is balanced, and so the sum of the torques is zero. When the sum of the torques is not zero, the rod's rotational acceleration is nonzero, and so its rotational velocity and angular momentum change.

In the situations depicted in Figures 12.4 and 12.5 we used the pivot to calculate the lever arm distances. This is a natural choice because that is the point about which the object under consideration is free to rotate. However, torques also play a role for stationary objects that are suspended or supported at several different points and that are not free to rotate—for example, a plank or bridge supported at either end. To determine what reference point to use in such cases, complete the following exercise.

Exercise 12.1 Reference point

Consider again the rod in Figure 12.4. Calculate the sum of the torques about the left end of the rod.

SOLUTION I begin by making a sketch of the rod and the three forces exerted on it, showing their points of application on the rod (Figure 12.6).

Example 12.2 Torques on lever

Three forces are exerted on the lever of Figure 12.7. Forces F_1 and F_2 are equal in magnitude, and the magnitude of F_3 is half as great. Force F_1 is horizontal, F_2 and F_3 are vertical, and the lever makes an angle of 45° with the horizontal. Do these forces cause the lever to rotate about the pivot? If so, in which direction?
The lever arm distances must now be determined relative to the left end of the rod. The lever arm distance of \(\vec{F}_1 \) to this point is zero, and so the torque caused by that force about the left end of the rod is zero. If I choose counterclockwise as the positive direction of rotation, \(\vec{F}_2 \) causes a negative torque about the left end of the rod: the force \(\vec{F}_2 \) exerted by the pivot causes a positive torque about the left end of the rod. The lever arm distance of \(\vec{F}_2 \) about the left end of the rod is \(r_1 + r_2 \), that of \(\vec{F}_4 \) is \(r_3 \). Because the rod is at rest, the magnitude of the force exerted by the pivot is equal to the sum of the forces \(\vec{F}_1 \) and \(\vec{F}_2 \). Taking into account the signs of the torques, we find that the sum of the torques about the left end of the rod is

\[
\tau = r_1 (\vec{F}_1 + \vec{F}_2) - (r_1 + r_2) \vec{F}_2 = r_1 \vec{F}_1 - r_2 \vec{F}_2.
\]

This is the same result we obtained for the torques about the pivot, and so the sum of the torques about the left end is zero.

Exercise 12.1 shows that the sum of the torques about the left end of the rod is zero, just like the sum of the torques about the pivot. You can repeat the calculation for the torques about the right end of the rod or any other point, and each time you will find that the sum of the torques is zero. The reason is that the rod is not rotating about any point, and so the sum of the torques must be zero about any point. In general we can say:

For a stationary object, the sum of the torques is zero.

For a stationary object we can choose any reference point we like to calculate torques. It pays to choose a reference point that simplifies the calculation. As you have seen, we do not need to consider any force that is exerted at the reference point. So, by putting the reference point at the point of application of a force, we can eliminate that force from the calculation.

12.2 In the situation depicted in Figure 12.2a, you must continue to exert a force on the seesaw to keep the child off the ground. The force \(\vec{F}_o \) exerts a torque on the seesaw, and yet the seeaw's rotational acceleration is zero. How can this be if torques cause objects to accelerate rotationally?

Example 12.2 Torques on lever

Three forces are exerted on the lever of Figure 12.7. Forces \(\vec{F}_1 \) and \(\vec{F}_2 \) are equal in magnitude, and the magnitude of \(\vec{F}_3 \) is half as great. Force \(\vec{F}_1 \) is horizontal, \(\vec{F}_2 \) and \(\vec{F}_3 \) are vertical, and the lever makes an angle of 45\(^\circ\) with the horizontal. Do these forces cause the lever to rotate about the pivot? If so, in which direction?
I don’t understand how this combination of factors tells you anything about direction? Aren’t magnitude and lever arm distance both scalar quantities? It seems like we would need to know some sort of direction to calculate torque.

I think you may be able to think about the direction separately. So, after multiplying this magnitude and distance, you can attach a sign to the torque based on the defined parameters of the system. In the following paragraph, they start to explain how to choose this direction.

This is a great question. To further elaborate on this, we can think of this in terms of the Torque equation. The equation for torque is $\tau = r \times F$, with r being the level arm distance and F being force. We know that force is a vector vector from previous chapters, and in regards to "r" it can also be thought of as the radial vector. What this means is that this distance from the pivot points from the axis of rotation to the point where the force acts. In as previously mentioned, there is a general convention (the right-hand rule) that is used to determine the direction which happens to be perpendicular to both the radius from the axis and to the force.
I don’t understand how this combination of factors tells you anything about direction. Aren’t magnitude and lever arm distance both scalar entities? It seems like we would need to know something more about the system in order to determine torque.

I think you may be able to think about the direction separately. So, after multiplying this magnitude and distance, you can attach a sign to the torque based on the defined parameters of the system. In the following paragraph, they start to explain how to choose this direction.

This is a great question. To further elaborate on this, we can think of this in terms of the Torque equation. The equation for torque is \(\tau = r \times F \), with \(r \) being the level arm distance and \(F \) being force. We know that force is a vector vector from previous chapters, and in regards to "r" it can also be thought of as the radial vector. What this means is that this distance from the pivot points from the axis of rotation to the point where the force acts. In as previously mentioned, there is a general convention (the right-hand rule) that is used to determine the direction which happens to be perpendicular to both the radius from the axis and to the force.
I don’t understand how this combination of factors tells you anything about direction? Aren’t magnitude and lever arm distance both scalar quantities? It seems like we would need to know some sort of direction to calculate torque.

I think you may be able to think about the direction separately. So, after multiplying this magnitude and distance, you can attach a sign to the torque based on the defined parameters of the system. In the following paragraph, they start to explain how to choose this direction.

This is a great question. To further elaborate on this, we can think of this in terms of the Torque equation. The equation for torque is \(\tau = r \times F \), with \(r \) being the lever arm distance and \(F \) being force. We know that force is a vector vector from previous chapters, and in regards to "\(r \)" it can also be thought of as the radial vector. What this means is that this distance from the pivot points from the axis of rotation to the point where the force acts. In as previously mentioned, there is a general convention (the right-hand rule) that is used to determine the direction which happens to be perpendicular to both the radius from the axis and to the force.
I don’t understand how this combination of factors tells you anything about direction? Aren’t magnitude and lever arm distance both scalar quantities? It seems like we would need to know some sort of direction to calculate torque.

I think you may be able to think about the direction separately. So, after multiplying this magnitude and distance, you can attach a sign to the torque based on the defined parameters of the system. In the following paragraph, they start to explain how to choose this direction.

This is a great question. To further elaborate on this, we can think of this in terms of the Torque equation. The equation for torque is \(\tau = r \times F \), with \(r \) being the level arm distance and \(F \) being force. We know that force is a vector vector from previous chapters, and in regards to "\(r \)" it can also be thought of as the radial vector. What this means is that this distance from the pivot points from the axis of rotation to the point where the force acts. In as previously mentioned, there is a general convention (the right-hand rule) that is used to determine the direction which happens to be perpendicular to both the radius from the axis and to the force.
I don’t understand how this combination of factors tells you anything about direction? Aren’t magnitude and lever arm distance both scalar quantities? It seems like we would need to know some sort of direction to calculate torque.

I think you may be able to think about the direction separately. So, after multiplying this magnitude and distance, you can attach a sign to the torque based on the defined parameters of the system. In the following paragraph, they start to explain how to choose this direction.

This is a great question. To further elaborate on this, we can think of this in terms of the Torque equation. The equation for torque is \(\tau = r \times F \), with \(r \) being the level arm distance and \(F \) being force. We know that force is a vector vector from previous chapters, and in regards to “\(r \)” it can also be thought of as the radial vector. What this means is that this distance from the pivot points from the axis of rotation to the point where the force acts. In as previously mentioned, there is a general convention (the right-hand rule) that is used to determine the direction which happens to be perpendicular to both the radius from the axis and to the force.
I don’t understand how this combination of factors tells you anything about direction. Aren’t magnitude and lever arm distance both scalar quantities? It seems like we would need to know some sort of direction to calculate torque.

I think you may be able to think about the direction separately. So, after multiplying this magnitude and distance, you can attach a sign to the torque based on the defined parameters of the system. In the following paragraph, they start to explain how to choose this direction.

This is a great question. To further elaborate on this, we can think of this in terms of the Torque equation. The equation for torque is \(\tau = r \times F \), with \(r \) being the lever arm distance and \(F \) being force. We know that force is a vector and from previous chapters, and in regards to “\(r \)” it can also be thought of as the radial vector. What this means is that this distance from the pivot points from the axis of rotation to the point where the force acts. In as previously mentioned, there is a general convention (the right-hand rule) that is used to determine the direction which happens to be perpendicular to both the radius from the axis and to the force.

Exercise 12.1 shows that the sum of the torques about the left end of the rod is zero, just like the sum of the torques about the pivot. You can repeat the calculation for the torques about the right end of the rod or any other point, and each time you will find that the sum of the torques is zero. The reason is that the rod is not rotating about any point, and so the sum of the torques must be zero about any point. In general we can say:

For a stationary object, the sum of the torques is zero.

For a stationary object we can choose any reference point we like to calculate torques. It pays to choose a reference point that simplifies the calculation. As you have seen, we do not need to consider any force that is exerted at the reference point. So, by putting the reference point at the point of application of a force, we can eliminate that force from the calculation.

In the situation depicted in Figure 12.2a, you must continue to exert a force on the seesaw to keep the child off the ground. The force you exert causes a torque on the seesaw, and yet the seesaw’s rotational acceleration is zero. How can this be if torques cause objects to accelerate rotationally?

Example 12.2 Torques on lever

Three forces are exerted on the lever of Figure 12.7. Forces \(\vec{F}_1 \) and \(\vec{F}_2 \) are equal in magnitude, and the magnitude of \(\vec{F}_3 \) is half as great. Force \(\vec{F}_1 \) is horizontal, \(\vec{F}_2 \) and \(\vec{F}_3 \) are vertical, and the lever makes an angle of 45° with the horizontal. Do these forces cause the lever to rotate about the pivot? If so, in which direction?
quickly navigate all comments
Exercise 12.1 shows that the sum of the torques about the left end of the rod is zero, just like the sum of the torques about the pivot. You can repeat the calculation for the torques about the right end of the rod or any other point, and each time you will find that the sum of the torques is zero. The reason is that the rod is not rotating about any point, and so the sum of the torques must be zero about any point. In general we can say:

For a stationary object, the sum of the torques is zero.

For a stationary object we can choose any reference point we like to calculate torques. It pays to choose a reference point that simplifies the calculation. As you have seen, we do not need to consider any force that is exerted at the reference point. So, by putting the reference point at the point of application of a force, we can eliminate that force from the calculation.

12.2 In the situation depicted in Figure 12.2a, you must continue to exert a force on the seesaw to keep the child off the ground. The force you exert causes a torque on the seesaw, and yet the seesaw’s rotational acceleration is zero. How can this be if torques cause objects to accelerate rotationally?

Example 12.2 Torques on lever

Three forces are exerted on the lever of Figure 12.7. Forces \vec{P}_1 and \vec{P}_2 are equal in magnitude, and the magnitude of \vec{P}_3 is half as great. Force \vec{P}_1 is horizontal, \vec{P}_2 and \vec{P}_3 are vertical, and the lever makes an angle of 45° with the horizontal. Do these forces cause the lever to rotate about the pivot? If so, in which direction?
Brian Lukoff responded to a question in Mazur Chapter 4 Sample that you wanted to know the answer to:

21 minutes ago, you asked this question on Perusall:

No friction at all seems impossible. Isn’t there always some friction in any real case?

Brian Lukoff just responded to the question by saying:

Right - I think there will always be some friction due to the second law of thermodynamics.

If this helps your understanding, click the button below. If you want to respond, simply reply to this email to post to Perusall.

[View conversation] [This comment helps my understanding]
Brian Lukoff responded to a question in Mazur Chapter 4 Sample that you wanted to know the answer to:

21 minutes ago, you asked this question on Perusall:

No friction at all seems impossible. Isn’t there always some friction in any real case?

Brian Lukoff just responded to the question by saying:

Right - I think there will always be some friction due to the second law of thermodynamics.

If this helps your understanding, click the button below. If you want to respond, simply reply to this email to post to Perusall.
email notifications

Brian Lukoff responded to a question in Mazur Chapter 4 Sample that you wanted to know the answer to:

21 minutes ago, you asked this question on Perusall:

No friction at all seems impossible. Isn’t there always some friction in any real case?

Brian Lukoff just responded to the question by saying:

Right - I think there will always be some friction due to the second law of thermodynamics.

If this helps your understanding, click the button below. If you want to respond, enter your comment in the box below.

View conversation

This comment helps my understanding
email notifications

Brian Lukoff responded to a question in Mazur Chapter 4 Sample that you wanted to know the answer to.

21 minutes ago, you asked this question on Perusall:

No friction at all seems impossible. Isn’t there always some friction in any real case?

Brian Lukoff just responded to the question by saying:

Right - I think there will always be some friction due to the second law of thermodynamics.

If this helps your understanding, click the button below. If you want to respond, simply reply.

option 3: mark as answered

View conversation

This comment helps my understanding
how to get students to participate?
use combination of intrinsic and extrinsic motivation drivers
rubric-based assessment

- quality (thoughtful reading & interpretation)
rubric-based assessment

• quality (thoughtful reading & interpretation)

• quantity (minimum 10)
rubric-based assessment

- quality (thoughtful reading & interpretation)
- quantity (minimum 10)
- timeliness (before class)
rubric-based assessment

- **quality** (thoughtful reading & interpretation)
- **quantity** (minimum 10)
- **timeliness** (before class)
- **distribution** (not clustered)
rubric-based assessment

• quality (thoughtful reading & interpretation)
• quantity (minimum 10)
• timeliness (before class)
• distribution (not clustered)

Over 20,000 annotations!
rubric-based assessment

- quality (thoughtful reading & interpretation)
- quantity (minimum 10)
- timeliness (before class)
- distribution (not clustered)

how do you process all of that??
rubric-based assessment

• quality (thoughtful reading & interpretation)
• quantity (minimum 10)
• timeliness (before class)
• distribution (not clustered)

How do you process all of that??

fully automated assessment
fully automated assessment

- specialized machine learning algorithm
- assesses intellectual content
- exceeds intercoder reliability
Gradebook

Click on a grade to see details about the student’s assignment.

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student ID</th>
<th>Chapter 1</th>
<th>Chapter 2</th>
<th>Chapter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>name1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name4</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name6</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name7</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name8</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name9</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name10</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name11</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name12</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Release to students]

[Release to students]
<table>
<thead>
<tr>
<th>Student Name</th>
<th>Student ID</th>
<th>Chapter 1</th>
<th>Chapter 2</th>
<th>Chapter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alex Smith</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Bob Johnson</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Charlie Lee</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Dave Brown</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Emma Davis</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Frank Evans</td>
<td>3</td>
<td>3</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Grace Foster</td>
<td>3</td>
<td>3</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>Helen Gomez</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>John Hunter</td>
<td>3</td>
<td>3</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>Kevin Kim</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Additional metrics:

- Total number of annotations: 16
- Total number of annotations submitted on time: 11
- Average quality of top 10 annotations submitted on time: 1.80
- Distribution of annotations: 3.8
- Assignment score: 1

Scores range from 0 to 3.
connect pre-class and in-class activities
Confusion report for Chapter 24

right hand rule (11 questions)
- JB: Can someone in simpler terms explain the right-hand rule?
- WJ: Is there another way, besides the right hand rule, to find the direction of the magnetic field with a current?
- SB: Using the right hand rule, I believe the answer is D. Is that correct?

direction magnetic field (8 questions)
- CP: Why is it that the magnet field points away from the north pole and towards the south pole? When on the previous page it stated that the direction of the magnetic field is the direction that the north pole of a compass needle points.
- AB: How can you determine which direction the magnetic field will point towards?
- KH: So whichever way the north pole faces is the direction of the magnetic field but that doesn’t always mean its pointing true north?

earth magnetic field (6 questions)
- CP: Does that mean that the compass will be distracted from the Earth’s magnetic field and use the magnetic field that the current of the wire gives off?
- AK: Can someone explain why this type of bacteria knows what direction the earth’s magnetic fields are facing?
- J: Does the circular loop of current have any similarities with the look of the earth’s magnetic field? They kind of look similar to me.
motivating factors

Intrinsic:

• social interaction
motivating factors

Intrinsic:

- social interaction
- tie-in to in-class activity
motivating factors

Intrinsic:
- social interaction
- tie-in to in-class activity

Extrinsic:
- assessment (fully automated)
research data

percent of students

number of chapters missed before class
research data

close to 95%!
research data

every student prepared for every class
Let's try it out!

- sign on to http://app.perusall.com
- enter access code MAZUR-3898
- click on “Reading Assignment on Weight”
- read (and pose or answer questions)

coffee @10:45, reconvene @11:00
Try this:

1. post a question
2. answer someone else’s question
3. check email and try out email interface
• Engagement: 81% spend 2–6 hrs/wk reading
additional research data

• Engagement: 81% spend 2–6 hrs/wk reading

• Active reading: 85% annotate as they read and 40% take notes while reading
• Engagement: 81% spend 2–6 hrs/wk reading

• Active reading: 85% annotate as they read and 40% take notes while reading

• Performance: significantly higher scores
eBook vs. physical book

The lever arm distances must now be determined relative to the left end of the rod. The lever arm distance of force \(F_1 \) to this point is zero, and so the torque caused by that force about the left end of the rod is zero. If I choose counterclockwise as the positive direction of rotation, \(F_2 \) causes a negative torque about the left end of the rod; the force \(F_1 \), exerted by the pivot causes a positive torque about the left end of the rod. The lever arm distance of \(F_3 \) about the left end of the rod is \(r_1 + r_2 \) that of \(F_2 \). Because the rod is at rest, the magnitude of the force exerted by the pivot is equal to the sum of the forces \(F_1 \) and \(F_2 \). Taking into account the signs of the torques, we find that the sum of the torques about the left end of the rod is \(\sum \tau = (r_1 + r_2)(F_1 + F_2) = r_1 F_1 - r_2 F_2 \). This is the same result we obtained for the torques about the pivot, and so the sum of the torques about the left end is zero.

Exercise 12.1 shows that the sum of the torques about the left end of the rod is zero, just like the sum of the torques about the pivot. You can repeat the calculation for the torques about the right end of the rod or any other point, and each time you will find that the sum of the torques is zero. The reason is that the rod is not rotating about any point, and so the sum of the torques must be zero about any point. In general we can say:

For a stationary object, the sum of the torques is zero.

For a stationary object we can choose any reference point we like to calculate torques. It pays to choose a reference point that simplifies the calculation. As you have seen, we do not need to consider any force that is exerted at the reference point. So, by putting the reference point at the point of application of a force, we can eliminate that force from the calculation.

12.2 In the situation depicted in Figure 12.2a, you must continue to exert a force on the seesaw to keep the child off the ground. The force you exert causes a torque on the seesaw and yet the seesaw's rotational acceleration is zero. How can this be if torques cause objects to accelerate rotationally?

Example 12.2 Torques on lever

Three forces are exerted on the lever of Figure 12.7. Forces \(F_1 \) and \(F_2 \) are equal in magnitude, and the magnitude of \(F_3 \) is half as great. Force \(F_3 \) is horizontal, \(F_2 \) and \(F_3 \) are vertical, and the lever makes an angle of 45° with the horizontal. Do these forces cause the lever to rotate about the pivot? If so, in which direction?
eBook vs. physical book

When I study, I use the printed version...
eBook vs. physical book

When I study, I use the printed version...

- only 7%
- as much as Perusall 5%
- barely or not at all 88%
When I study, I use the printed version...

- only 7%
- as much as Perusall 5%
- barely or not at all 88%
eBook vs. physical book

When I study, I use the printed version...

- only 7%
- as much as Perusall 5%
- barely or not at all 88%

can eliminate printed books!
current adoption process

The lever arm distances must now be determined relative to the left end of the rod. The lever arm distance of force \(F_1 \) to this point is zero, and so the torque caused by that force about the left end of the rod is zero. If I choose counterclockwise as the positive direction of rotation, \(F_2 \) causes a negative torque about the left end of the rod; the force \(F_2 \), exerted by the pivot causes a positive torque about the left end of the rod. The lever arm distance of \(F_2 \) about the left end of the rod is \(r_1 + r_2 \) that of \(F_2 \). Because the rod is at rest, the magnitude of the force exerted by the pivot is equal to the sum of the forces \(F_1 \) and \(F_2 \). Taking into account the signs of the torques, we find that the sum of the torques about the left end of the rod is

\[\sum \tau = r_1 (F_1 + F_2) - (r_1 + r_2) F_2 = r_1 F_1 - r_2 F_2. \]

This is the same result we obtained for the torques about the pivot, and so the sum of the torques about the left end is zero.

Exercise 12.1 shows that the sum of the torques about the left end of the rod is zero, just like the sum of the torques about the pivot. You can repeat the calculation for the torques about the right end of the rod or any other point, and each time you will find that the sum of the torques is zero. The reason is that the rod is not rotating about any point, and so the sum of the torques must be zero about any point. In general, we can say:

For a stationary object, the sum of the torques is zero.

For a stationary object, we can choose any reference point we like to calculate torques. It pays to choose a reference point that simplifies the calculation. As you have seen, we do not need to consider any force that is exerted at the reference point. So, by putting the reference point at the point of application of a force, we can eliminate that force from the calculation.

12.2 In the situation depicted in Figure 12.2a, you must continue to exert a force on the seesaw to keep the child off the ground. The force you exert causes a torque on the seesaw, and yet the seesaw's rotational acceleration is zero. How can this be if torques cause objects to accelerate rotationally?

Example 12.2 Torques on lever

Three forces are exerted on the lever of Figure 12.7. Forces \(\vec{F}_1 \) and \(\vec{F}_2 \) are equal in magnitude, and the magnitude of \(\vec{F}_3 \) is half as great. Force \(\vec{F}_1 \) is horizontal, \(\vec{F}_2 \) and \(\vec{F}_3 \) are vertical, and the lever makes an angle of 45° with the horizontal. Do these forces cause the lever to rotate about the pivot? If so, in which direction?
current adoption process

1. Instructor selects textbook on perusall.com
current adoption process

1. Instructor selects textbook on perusall.com

2. Students buy access on perusall.com
current adoption process

1. Instructor selects textbook on perusall.com

2. Students buy access on perusall.com

textbook available on Day 1!
Benefits to students

Students...

Exercise 12.1 Reference point

Consider again the rod in Figure 12.4. Calculate the sum of the torques about the left end of the rod.

SOLUTION Begin by making a sketch of the rod and the three forces exerted on it, showing their points of application on the rod (Figure 12.6).
Benefits to students

Students...

• read the textbook
Benefits to students

Students...

• read the textbook

• learn how to read

Exercise 12.1 Reference point

Consider again the rod in Figure 12.4. Calculate the sum of the torques about the left end of the rod.

SOLUTION I begin by making a sketch of the rod and the three forces exerted on it, showing their points of application on the rod (Figure 12.6).
Benefits to students

Students...

• **read the textbook**

• **learn how to read**

• **learn how to read critically**
Benefits to students

Students...

• read the textbook

• learn how to read

• learn how to read critically

• participate in a collaborative experience
Benefits to students

Students...

• read the textbook
• learn how to read
• learn how to read critically
• participate in a collaborative experience
• get more out of their classes
Benefits to students

Students…

• read the textbook
• learn how to read critically
• learn how to study and work collaboratively
• get more out of their classes

transferable skills
Benefits to instructors

The lever arm distances must now be determined relative to the left end of the rod. The lever arm distance of force \(F_1 \) to this point is zero, and so the torque caused by that force about the left end of the rod is zero. If I choose counterclockwise as the positive direction of rotation, \(F_2 \) causes a negative torque about the left end of the rod; that force \(F_2 \), exerted by the pivot causes a positive torque about the left end of the rod. The lever arm distance of \(F_2 \) about the left end of the rod is \(r_1 + r_2 \) that of \(F_2 \). Because the rod is at rest, the magnitude of the force exerted by the pivot is equal to the sum of the forces \(F_1 \) and \(F_2 \). Taking into account the signs of the torques, we find that the sum of the torques about the left end of the rod is \(\tau_1 (F_1 + F_2) = (r_1 + r_2) F_2 = r_1 F_2 - r_2 F_2 \). This is the same result we obtained for the torques about the pivot, and so the sum of the torques about the left end is zero.

Exercise 12.1 shows that the sum of the torques about the left end of the rod is zero, just like the sum of the torques about the pivot. You can repeat the calculation for the torques about the right end of the rod or any other point, and each time you will find that the sum of the torques is zero. The reason is that the rod is not rotating about any point, and so the sum of the torques must be zero about any point. In general we can say:

For a stationary object, the sum of the torques is zero.

For a stationary object we can choose any reference point we like to calculate torques. It pays to choose a reference point that simplifies the calculation. As you have seen, we do not need to consider any force that is exerted at the reference point. So, by putting the reference point at the point of application of a force, we can eliminate that force from the calculation.

Example 12.2 Torques on lever

Three forces are exerted on the lever of Figure 12.7. Forces \(F_1 \) and \(F_2 \) are equal in magnitude, and the magnitude of \(F_3 \) is half as great. Force \(F_1 \) is horizontal, \(F_2 \) and \(F_3 \) are vertical, and the lever makes an angle of 45° with the horizontal. Do these forces cause the lever to rotate about the pivot? If so, in which direction?
Benefits to instructors

- time recovery
Benefits to instructors

• time recovery

• improved use of class time
Benefits to instructors

• time recovery
• improved use of class time
• enhanced respect and understanding for students
Benefits to instructors

• time recovery
• improved use of class time
• enhanced respect and understanding for students

all at no cost & no additional effort!
follow up questions?

support@perusall.com