Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses

R. Younkin, J.E. Carey, J.A. Levinson, C. Crouch, C.M. Friend, E. Mazur

CLEO, Baltimore, MD
May 11, 2001

Harvard University
Cambridge, MA
Fabrication of conical microstructures

Optical properties of structures made in SF$_6$
- high absorptance
- explanations

Structures made in other ambient gases
- morphology
- optical and optoelectronic properties
Si (111) placed in background of SF$_6$

irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

Her et al., Appl. Phys. Lett. 73, 1673 (1998)
irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

Her et al., Appl. Phys. Lett. 73, 1673 (1998)
Microstructured silicon

Irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

Her et al., Appl. Phys. Lett. 73, 1673 (1998)
irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

Her et al., Appl. Phys. Lett. 73, 1673 (1998)
Irradiated silicon appears black
Microstructured silicon

20 µm
Microstructured silicon

4 \mu m
Optical properties
Ordinary silicon

Only wavelengths < 1.1 \(\mu \text{m} \) are absorbed

\[h\nu = E_{\text{gap}} = 1.07 \text{ eV} \]
Microstructured silicon

- (a) 1-2 \(\mu \text{m} \)
- (b) 4-7 \(\mu \text{m} \)
- (c) 10-12 \(\mu \text{m} \)
- (d) 18-20 \(\mu \text{m} \)
Total integrated reflectance

![Graph showing total integrated reflectance versus wavelength (µm). The reflectance is plotted on the y-axis ranging from 0 to 1 and the wavelength is plotted on the x-axis ranging from 0 to 3. The graph includes a curve labeled ordinary Si.](Image)
Microstructured silicon

Total integrated reflectance

![Graph showing total integrated reflectance for ordinary Si and microstructured Si across different wavelengths.](image)
Total integrated reflectance

- Microstructured silicon

Graph showing the total integrated reflectance against wavelength (μm) with different lines representing ordinary Si and microstructured silicon in wavelength ranges 1-2 μm and 4-7 μm.
Total integrated reflectance

- Microstructured silicon
- Ordinary Si
- Microstructured
Microstructured silicon

Total integrated transmittance

![Graph showing total integrated transmittance](attachment:image.png)

- Ordinary Si
Microstructured silicon

Total integrated transmittance

![Graph showing the total integrated transmittance of ordinary Si and microstructured Si against wavelength (µm). The graph demonstrates a significant increase in transmittance for microstructured Si compared to ordinary Si, particularly in the 1-12 µm wavelength range.]
Microstructured silicon

Total integrated absorptance

Graph showing the absorptance of ordinary Si over different wavelengths (µm).
Microstructured silicon

Total integrated absorptance

![Graph showing the absorptance of ordinary Si and microstructured Si over different wavelengths. The graph indicates that microstructured Si has a higher absorptance in the 1-2 µm wavelength range.]
Total integrated absorptance
Microstructured silicon

Total integrated absorptance

![Graph showing total integrated absorptance for ordinary Si and microstructured Si at different wavelengths (1-2 µm, 4-7 µm, 10-12 µm).]
What causes the absorption?
Why such high absorptance?

Microstructure shape can increase absorption
Why such high absorptance?

Secondary ion mass spectrometry

- High concentration of sulfur ($\sim 10^{20} \text{ cm}^{-3}$)
- Fluorine ($\sim 10^{17} \text{ cm}^{-3}$)
Why such high absorptance?

Sulfur adds states in Si band gap

States in gap allow subgap absorption
Effects of different ambient gases
Different ambient gases

SF_6 Cl_2

N_2 air

10 µm
Different ambient gases

Absorptance

![Graph showing absorptance vs. wavelength for SF₆ and flat samples.](chart.png)
Different ambient gases

Absorptance

![Graph showing absorptance vs. wavelength for different gases.](image-url)
Different ambient gases

Absorptance

![Absorptance graph showing absorption spectra for different gases.](image-url)
Different ambient gases

Absorptance

![Graph showing absorptance vs. wavelength for different gases]
Below band gap photocurrent
Avalanche photodiode response at 1.3 μm

Radiation Monitoring Devices, Watertown MA 02472
Conclusions

• Up to 90% infrared absorption
 → increased infrared photocurrent

• Absorption dependent on ambient gas

• Applications in infrared photodetectors, silicon solar cells, other possible devices

Li Zhao, Fudan University, Shanghai, China

funding: NSF, ARO

for more information, see:
http://mazur-www.harvard.edu
Microstructured silicon

Conclusions

Absorption dependent on shape, impurities

Up to 90% infrared absorption

Increased infrared photocurrent

Applications in infrared photodetectors, silicon solar cells, other possible devices
Different ambient gases

Reflectance

![Graph showing reflectance as a function of wavelength (μm).]
Different ambient gases

Reflectance

![Graph showing reflectance vs. wavelength for different gases including air, N₂, Cl₂, and SF₆.](image-url)
Different ambient gases

Transmittance

![Graph showing transmittance versus wavelength (µm)]

- Transmittance values range from 0 to 1.
- The graph indicates a sharp increase in transmittance at a particular wavelength, followed by a plateau.
- The y-axis represents transmittance, and the x-axis represents wavelength (µm).
- The label "flat" is present on the graph.
Different ambient gases

Transmittance

![Graph showing transmittance vs. wavelength for different gases: air, N₂, Cl₂, and SF₆.](image)
Microstructured silicon

irradiate with 100 fs, 10 kJ/m² laser pulses in SF₆

Her et al., Appl. Phys. Lett. 73, 1673 (1998)