Ultrafast Phase Transition Dynamics in GeSb Films

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, and E. Mazur
Department of Physics and Division of Engineering & Applied Sciences
Harvard University

J. Solis
Instituto de Optica, Madrid, Spain
Introduction
Motivation to study GeSb
Introduction
 Motivation to study GeSb

Experimental Technique
 Femtosecond time-resolved ellipsometry
Introduction
 Motivation to study GeSb

Experimental Technique
 Femtosecond time-resolved ellipsometry

Results
 Time-resolved $\varepsilon(\omega)$ of GeSb films
Introduction
Motivation to study GeSb

Experimental Technique
Femtosecond time-resolved ellipsometry

Results
Time-resolved $\varepsilon(\omega)$ of GeSb films

Analysis
Comparison to previous results
Introduction
Motivation to study GeSb

Experimental Technique
Femtosecond time-resolved ellipsometry

Results
Time-resolved $\varepsilon(\omega)$ of GeSb films

Analysis
Comparison to previous results

Conclusions
Motivations to study phase transitions in GeSb films

Applications in optical data storage

— optically induce transitions between crystalline and amorphous phases

— $\Delta R/R \sim 18\%$
Motivations to study phase transitions in GeSb films

Applications in optical data storage

— optically induce transitions between crystalline and amorphous phases

— $\Delta R/R \sim 18\%$

Recently suggested ultrafast disorder-to-order phase transition

— Sokolowski-Tinten et al. reported on crystallization within 200fs
Amorphous and crystalline phases of GeSb

\[\text{Ge}_{0.06}\text{Sb}_{0.94} \]

amorphous phase is stabilized by Ge atoms
\[R \approx 55\% \]
Amorphous and crystalline phases of GeSb

The amorphous phase is stabilized by Ge atoms with a stabilizing rate of $R \approx 55\%$.

The crystalline structure is identical to pure Sb, a solid solution of Ge in Sb with a rate of $R \approx 67\%$.

The critical free energy per area for crystallization is $F_{cr} = 22 \text{ mJ/cm}^2$.

A diagram showing the atomic structures of GeSb with Ge$_{0.06}$Sb$_{0.94}$.
Amorphous and crystalline phases of GeSb

\[F_a \sim 3F_{cr} \]

\[Ge_{0.06}Sb_{0.94} \]

\[F_{cr} = 22 \text{ mJ/cm}^2 \]

Amorphous phase is stabilized by Ge atoms
R \approx 55\%

Crystalline structure identical to pure Sb — solid solution of Ge in Sb
R \approx 67\%
Previous work suggests ultrafast crystallization

Transient reflectivities at 2.01 eV and 0° angle of incidence

Sokolowski-Tinten et al. PRL, 81, 3670 (1998)
Time-Resolved Ellipsometry

EXPERIMENTAL TECHNIQUE

Pump pulse:
- 1.5 eV (800 nm)
- up to 500 µJ
- θ_{pump} < θ_1, θ_2

Probe pulse:
- 1.7 — 3.5 eV (350 nm — 750 nm)
- < 0.1 µJ
- θ_1 = 53°, θ_2 = 80°
Extracting the Dielectric Function

Reflectivity Spectra
Extracting the Dielectric Function

Reflectivity Spectra

Numerically invert Fresnel formulae
Extracting the Dielectric Function

Reflectivity Spectra

Dielectric Function

Numerically invert Fresnel formulae
Extracting the Dielectric Function

Reflectivity Spectra

Dielectric Function

Numerically invert Fresnel formulae
Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$
Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$
RESULTS

Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$

![Graph showing the evolution of dielectric function after excitation.]

- c-GeSb
- a-GeSb

1.6 F_{cr}
- 0 – 5 ps

Dielectric function vs. photon energy (eV)

- $\text{Re} \varepsilon$
- $\text{Im} \varepsilon$

- 0 fs
- 100 fs
Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$

Material does not achieve crystalline phase...
RESULTS

Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$

Material does not achieve crystalline phase...

Dynamics stop after 200fs.
Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$

Material does not achieve crystalline phase...

Dynamics stop after 200fs.

Electrons and lattice reach thermal equilibrium: little change in $\varepsilon(\omega)$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig.png}
\caption{Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$}
\end{figure}
Evolution of $\varepsilon(\omega)$ after excitation of $1.6 F_{cr}$

[Graph showing the evolution of the dielectric function $\varepsilon(\omega)$ for crystalline (c) and amorphous (a) GeSb after excitation with $1.6 F_{cr}$, with data points at 5 and 475 ps.]
Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$

Results

- c-GeSb
- a-GeSb

Photon energy (eV) vs. dielectric function

- Real part ($Re \, \varepsilon$)
- Imaginary part ($Im \, \varepsilon$)

5 - 475 ps
Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$

![Graph showing the evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$ with different photon energies and times.](image)
Evolution of $\varepsilon(\omega)$ after excitation of $1.6F_{cr}$

Optical properties constant to ~ 0.5ns.
Evolution of $\varepsilon(\omega)$ after excitation of 4.0F_{cr}
Evolution of $\varepsilon(\omega)$ after excitation of $4.0F_{cr}$
Evolution of $\varepsilon(\omega)$ after excitation of $4.0F_{cr}$
RESULTS

Evolution of $\varepsilon(\omega)$ after excitation of 4.0F_{cr}

Dielectric function

Photon energy (eV)

0 fs

100 fs
Evolution of $\varepsilon(\omega)$ after excitation of $4.0 F_{cr}$ vs $1.6 F_{cr}$ for 0 - 5 ps

Dielectric Function

- c-GeSb
- a-GeSb

Photon energy (eV)

0 fs
- 100 fs
- 200 fs
Evolution of $\varepsilon(\omega)$ after excitation of $4.0 F_{cr}$

Evidence of new non-thermal phase
Evolution of $\varepsilon(\omega)$ after excitation of $4.0F_{cr}$

Evidence of new non-thermal phase

Subsequent dynamics due to strong excitation
Evolution of $\varepsilon(\omega)$ after excitation of $4.0F_{cr}$

Subsequent dynamics due to strong excitation
Evolution of $\varepsilon(\omega)$ after excitation of 4.0F$_{cr}$

Subsequent dynamics due to strong excitation.
Evolution of $\varepsilon(\omega)$ after excitation of $4.0F_{cr}$

Subsequent dynamics due to strong excitation
Evolution of $\varepsilon(\omega)$ after excitation of 4.0F_{cr}

- Subsequent dynamics due to strong excitation
- Signs of recrystallization
Evolution of $\varepsilon(\omega)$ after excitation of $0.6F_{cr}$
Evolution of $\varepsilon(\omega)$ after excitation of $0.6F_{\text{cr}}$
Evolution of $\varepsilon(\omega)$ after excitation of $0.6F_{cr}$
Evolution of $\varepsilon(\omega)$ after excitation of $0.6F_{cr}$

![Graph showing the evolution of dielectric function for different photon energies and times for c-GeSb and a-GeSb.](image)

- **0.6 F_{cr}**:
 - 0 - 5 ps
 - c-GeSb
 - a-GeSb

- **1.6 F_{cr}**:
 - 0 - 5 ps
 - c-GeSb
 - a-GeSb
Evolution of $\varepsilon(\omega)$ after excitation of $0.6 F_{cr}$

0.6 F_{cr}
- c-GeSb
- 0 – 5 ps
- 0 fs
- 100 fs
- 200 fs

1.6 F_{cr}
- c-GeSb
- 0 – 5 ps
- 0 fs
- 100 fs
- 200 fs
Evolution of $\varepsilon(\omega)$ after excitation of $0.6F_{cr}$

Material does not reach new phase for $F < F_{cr}$
RESULTS

Evolution of $\varepsilon(\omega)$ after excitation of $0.6F_{cr}$

Material does not reach new phase for $F < F_{cr}$

Evidence for transition in optically thin layer
Comparison with previous results
Comparison with previous results

Time-resolved ε(ω)
Comparison with previous results

Time-resolved $\varepsilon(\omega)$ \xrightarrow{\text{Fresnel Formulae}}
Comparison with previous results

Time-resolved $\varepsilon(\omega)$

Fresnel Formulae

Reflectivity

Time delay (ps)

2.01 eV, 0°

Crystalline

Amorphous

4.0 F_{cr}

1.6 F_{cr}

0.6 F_{cr}
Comparison with previous results

Excellent agreement at 2.01 eV and 0° angle of incidence.

Sokolowski-Tinten et al. PRL, 81, 3670 (1998)
Comparison with previous results

For other parameters distinction of new phase from c-GeSb becomes evident.

Sokolowski-Tinten et al. PRL, 81, 3670 (1998)
New non-thermal phase of Sb-rich GeSb films
CONCLUSION

New non-thermal phase of Sb-rich GeSb films

No ultrafast disorder-to-order transition in GeSb
CONCLUSION

New non-thermal phase of Sb-rich GeSb films

No ultrafast disorder-to-order transition in GeSb

Femtosecond time-resolved ellipsometry is powerful tool for probing ultrafast phase changes
Dr. K. Sokolowski-Tinten
Dr. Craig Arnold

This work can be found in
J. P. Callan et al., PRL, 86, 3650 (2001)

For a copy of this talk and additional information, please visit
http://mazur-www.harvard.edu