Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon

Jim Carey
Eric Mazur
Catherine Crouch
Rebecca Younkin
irradiate with 100-fs 10 kJ/m² pulses
Introduction

“black silicon”
Introduction

20 µm
Introduction
Introduction
Background

Absorptance
Background

absorptance

Background

absorptance

Background

Absorptance

Background

Points to keep in mind:

- one-step, maskless process
- large area with uniform high density of spikes
- band structure change
gold coating
Setup

20 µm mica spacers

gold coating
Setup

anode

gold coating
Setup

Diagram showing an anode with a gold coating connected to a 1 MΩ resistor and a voltage source. A voltmeter (V) and ammeter (A) are also shown in the circuit.
Results
turn-on field (1 µA/cm²): 1.2 V/µm
Results

threshold field (10 μA/cm2): 2.1 V/µm
Results
Results
Results
Results

![Graph showing the relationship between potential difference (V) and current (mA)]
Results

maximum current: 15 mA (4 mm2 sample)
Results
Results
Discussion

Ion channeling and electron backscattering

- spikes retain crystalline order
- high density of defects
Secondary ion mass spectrometry:

- 10^{20} cm$^{-3}$ sulfur
- 10^{17} cm$^{-3}$ fluorine
sulfur introduces states in the gap

states broaden into a band
Field emission

E_F

E_g

CB

VB

semiconductor vacuum

ϕ

\[\text{SLIDE HEADING} \]

\[\text{semiconductor vacuum} \]
Field emission

The diagram illustrates the energy bands of a semiconductor in the presence of a vacuum. The conduction band (CB) and the valence band (VB) are marked with E_F and E_g, respectively. The work function ϕ represents the energy difference between the Fermi level E_F and the vacuum level in the semiconductor. The diagram highlights the transition from the semiconductor to the vacuum.
Field emission

- CB: Conduction Band
- VB: Valence Band
- E_F: Fermi Level
- E_g: Band Gap
- ϕ: Work Function
- e^{-}: Electron
Field emission

- CB
- E_F
- VB
- semiconductor
- vacuum
- e^-
Discussion
sulfur band provides additional electrons
Microstructured silicon

- fabricated by simple, maskless process
Microstructured silicon

- fabricated by simple, maskless process
- can be integrated with microelectronics
Microstructured silicon

- fabricated by simple, maskless process
- can be integrated with microelectronics
- provides stable, high field-emission current
Microstructured silicon

- fabricated by simple, maskless process
- can be integrated with microelectronics
- provides stable, high field-emission current
- is durable
Future Directions

- Ordered arrays
- Other gases
- Functionalizing
- Emission mechanism
Acknowledgements

Rebecca Younkin, Mike Sheehy, Catherine Crouch, Josh Levinson, and the Mazur group

Li Zhao, Fudan University, Shanghai, China

funding: ARO, NSF, NDSEG

http://mazur-www.harvard.edu