physics

Nonequilibrium materials: using ultrafast laser pulses to change band structures, at SPIE Conference on Ultrafast Bandgap Photonics (Baltimore, MD), Sunday, April 17, 2016:
Soon after it was discovered that intense laser pulses of nanosecond duration from a ruby laser could anneal the lattice of silicon, it was established that this so-called pulsed laser annealing is a thermal process. The past two decades have show that ultrashort laser pulses in the femtosecond regime can induce athermal, nonequilibrium processes that lead to either transient phase changes in semiconductors through ultrafast ionization or permanent phase changes through nonequilibrium doping. In this talk we will review work in both of these regimes and show how ultrafast lasers can be used... Read more about Nonequilibrium materials: using ultrafast laser pulses to change band structures
Wrapping light around a hair, at Irish Science Teacher's Associations Annual Conference (Limerick, Ireland), Saturday, April 9, 2016:
Can light be guided by a fiber whose diameter is much smaller than the wavelength of the light? Can we mold the flow of light on the micrometer scale so it wraps, say, around a hair? Until recently the answer to these questions was "no". We developed a technique for drawing long, free-standing silica wires with diameters down to 50 nm that have a surface smoothness at the atomic level and a high uniformity of diameter. Light can be launched into these silica nanowires by optical evanescent coupling and the wires allow low-loss single-mode operation. They can be bent sharply, making it... Read more about Wrapping light around a hair
Less is More: Extreme Optics with Zero Refractive Index, at Trinity College (Dublin, Ireland), Thursday, April 7, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support propagating light waves that have infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using... Read more about Less is More: Extreme Optics with Zero Refractive Index
Less is More: Extreme Optics with Zero Refractive Index, at Physics Colloquium, Washington State University (Pullman, WA), Thursday, March 24, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support propagating light waves that have infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using... Read more about Less is More: Extreme Optics with Zero Refractive Index
Less is More: Extreme Optics with Zero Refractive Index, at Seminar on Modern Optics and Spectroscopy, Massachusetts Institute of Technology (Cambridge, MA), Tuesday, March 22, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Less is More: Extreme Optics with Zero Refractive Index, at Robert Resnick Lecture, Rensselaer Polytechnic Institute (Troy, NY), Wednesday, March 2, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support propagating light waves that have infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using... Read more about Less is More: Extreme Optics with Zero Refractive Index
Less is More: Extreme Optics with Zero Refractive Index, at Physics Colloquium, UMass Lowell (Lowell, MA), Wednesday, February 24, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Less is More: Extreme Optics with Zero Refractive Index, at Photonics West 2016, Integrated Optics: Devices, Materials, and Technologies XX (San Francisco, CA), Monday, February 15, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Less is More: Extreme Optics with Zero Refractive Index, at Applied Physics Colloquium, Harvard University (Cambridge, MA), Friday, February 12, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index

Pages