Seminar

Innovating Education to Educate Innovators, at University of Akron (Akron, OH), Thursday, February 23, 2017:
Can we teach innovation? Innovation requires whole-brain thinking — right-brain thinking for creativity and imagination, and left-brain thinking for planning and execution. Our current approach to education in science and technology, focuses on the transfer of information, developing mostly right-brain thinking by stressing copying and reproducing existing ideas rather than generating new ones. I will show how shifting the focus in lectures from delivering information to team work and creative thinking greatly improves the learning that takes place in the classroom and promotes independent... Read more about Innovating Education to Educate Innovators
Teaching Physics, Conservation Laws First, at University of Akron (Akron, OH), Thursday, February 23, 2017:
The Principles and Practice of Physics is a groundbreaking new calculus-based introductory physics textbook that uses a unique organization and pedagogy to allow students to develop a true conceptual understanding of physics alongside the quantitative skills needed in the course. The book organizes introductory physics around the conservation principles and provides a unified contemporary view of introductory physics. In this talk we will discuss the unique architecture of the book, the conservation-laws-first approach, and results obtained with this book.
Breakthroughs in nanophotonics, at Nanyang Technological University (Singapore), Wednesday, August 24, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Breakthroughs in nanophotonics
Less is More: Extreme Optics with Zero Refractive Index, at Seminar on Modern Optics and Spectroscopy, Massachusetts Institute of Technology (Cambridge, MA), Tuesday, March 22, 2016:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Assessment: The silent killer of learning, at Pontificia Universidad Católica de Chile (Santiago, Chile), Friday, January 15, 2016:
Why is it that stellar students sometimes fail in the workplace while dropouts succeed? One reason is that most, if not all, of our current assessment practices are inauthentic. Just as the lecture focuses on the delivery of information to students, so does assessment often focus on having students regurgitate that same information back to the instructor. Consequently, assessment fails to focus on the skills that are relevant in life in the 21st century. Assessment has been called the "hidden curriculum" as it is an important driver of students' study habits. Unless we rethink our approach to... Read more about Assessment: The silent killer of learning
Less is More: Extreme Optics with Zero Refractive Index, at Sichuan University (Chengdu, China), Saturday, December 19, 2015:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Less is More: Extreme Optics with Zero Refractive Index, at Wednesday Night Research Seminar, Harvard University (Cambridge, MA), Wednesday, December 2, 2015:
Nanotechnology has enabled the development of nanostructured composite materials (metamaterials) with exotic optical properties not found in nature. In the most extreme case, we can create materials which support light waves that propagate with infinite phase velocity, corresponding to a refractive index of zero. This zero index can only be achieved by simultaneously controlling the electric and magnetic resonances of the nanostructure. We present an in-plane metamaterial design consisting of silicon pillar arrays, embedded within a polymer matrix and sandwiched between gold layers. Using an... Read more about Less is More: Extreme Optics with Zero Refractive Index
Nonlinear optics in on-chip zero-index metamaterials, at Engineering Physics seminar, Universite de Montreal (Montreal, QC, Canada), Monday, November 23, 2015:
Optical metamaterials - composite materials whose electromagnetic properties are finely engineered by designing their constituents - have been shown to exhibit strange and exotic properties, such as negligible or negative indices of refraction and the direct control of the amplitude and phase of light. These properties have been used for innumerable applications, such as flat lenses, invisibility cloaks as well as previously unseen nonlinear interactions. Recently, our group has demonstrated the first on-chip metamaterial with a refractive index of zero. These isotropic structures exhibit a... Read more about Nonlinear optics in on-chip zero-index metamaterials
Teaching Physics, Conservation Laws First, at Wake Forest University (Winston-Salem, NC), Friday, October 16, 2015:
The Principles and Practice of Physics is a groundbreaking new calculus-based introductory physics textbook that uses a unique organization and pedagogy to allow students to develop a true conceptual understanding of physics alongside the quantitative skills needed in the course. The book organizes introductory physics around the conservation principles and provides a unified contemporary view of introductory physics. In this talk we will discuss the unique architecture of the book, the conservation-laws-first approach, and results obtained with this book.

Pages