1999

Peer Instruction: Getting Students to Think in Class, at 1999 Sigma Xi Forum (Minneapolis, MN), Thursday, November 4, 1999:
Most introductory undergraduate science courses are taught in large lectures. Although an efficient use of instructor time, passive lectures rarely challenge students to think critically in class, often reinforcing the common expectation that learning science amounts to acquiring information. Many students respond by memorizing facts or formulas without understanding the fundamental concepts. To actively engage students during class and focus their attention on underlying concepts, we have developed a student-centered approach to teaching large courses, Peer Instruction. Lectures are... Read more about Peer Instruction: Getting Students to Think in Class
Peer Instruction: Getting Students to Think in Class, at 1999 Sigma Xi Forum (Minneapolis, MN), Thursday, November 4, 1999:
Most introductory undergraduate science courses are taught in large lectures. Although an efficient use of instructor time, passive lectures rarely challenge students to think critically in class, often reinforcing the common expectation that learning science amounts to acquiring information. Many students respond by memorizing facts or formulas without understanding the fundamental concepts. To actively engage students during class and focus their attention on underlying concepts, we have developed a student-centered approach to teaching large courses, Peer Instruction. Lectures are... Read more about Peer Instruction: Getting Students to Think in Class
Micromachining of bulk glass with tightly-focused femtosecond laser pulses, at XI International Symposium Ultrafast Phenomena in Spectroscopy, Academia Sinica (Taipei, Taiwan), Tuesday, October 26, 1999:
By focusing femtosecond laser pulses with high numerical-aperture microscope objectives, we micromachine optical glass using energies that are in the range of modern laser oscillators. When a femtosecond laser pulse is tightly focused inside a transparent material, energy deposition occurs only at the focus, where the laser intensity is high enough to cause absorption through nonlinear processes. When enough energy is deposited, the material is damaged and a localized change in the index of refraction is produced. By scanning the focus through the sample, very precise, three-dimensional... Read more about Micromachining of bulk glass with tightly-focused femtosecond laser pulses
Black Silicon, at XI International Symposium Ultrafast Phenomena in Spectroscopy, Academia Sinica (Taipei, Taiwan), Monday, October 25, 1999:
Laser-induced microexplosions: creating stellar conditions on an optical bench, at Joint SPIE and Department of Electrical and Electrical Engineering Seminar, The University of Hong Kong (Hong Kong, Hong Kong), Saturday, October 23, 1999:
Using femtosecond laser pulses we study the effects of intense laser radiation on transparent materials. By tightly focusing these laser pulses below the surface of transparent materials, we initiate highly nonlinear absorption processes which produce a dense, highly-excited plasma inside the sample. The high density, tightly-confined plasma leads to a micron-sized explosion within the material, with temperatures and pressures approaching stellar conditions. We have recently shown that it is possible to create internal submicron-sized structures by optically initiating microexplosions inside... Read more about Laser-induced microexplosions: creating stellar conditions on an optical bench

Pages