2006

Wrapping light around a hair: manipulating light at the nanoscale, at Nanoscience Workshop, University of Arkansas-Little Rock (Little Rock, AR), Monday, May 1, 2006:
Can light be guided by a fiber whose diameter is much smaller than the wavelength of the light? Can we mold the flow of light on the micrometer scale so it wraps, say, around a hair? Until recently the answer to these questions was ‘no’. We developed a technique for drawing long, free-standing silica wires with diameters down to 50 nm that have a surface smoothness at the atomic level and a high uniformity of diameter. Light can be launched into these silica nanowires by optical evanescent coupling and the wires allow low-loss single-mode operation. They can be bent sharply, making it... Read more about Wrapping light around a hair: manipulating light at the nanoscale
Subcellular surgery and nanosurgery, at Sigma Pi Sigma Colloquium, University of Connecticut (Storrs, CT), Friday, April 28, 2006:
We use femtosecond laser pulses to manipulate sub-cellular structures inside live and fixed cells. Using only a few nanojoules of laser pulse energy, we are able to selectively disrupt individual mitochondria in live bovine capillary epithelial cells, and cleave single actin fibers in the cell cytoskeleton network of fixed human fibro-blast cells. We have also used the technique to micromanipulate the neural network of C. Elegans, a small nematode. Our laser scalpel can snip individual axons without causing any damage to surrounding tissue, allowing us to study the function of individual... Read more about Subcellular surgery and nanosurgery
Confessions of a converted lecturer, at An Informal Discussion on Physics Teaching, University of Connecticut (Storrs, CT), Friday, April 28, 2006:
I thought I was a good teacher until I discovered my students were just memorizing information rather than learning to understand the material. Who was to blame? The students? The material? I will explain how I came to the agonizing conclusion that the culprit was neither of these. It was my teaching that caused students to fail! I will show how I have adjusted my approach to teaching and how it has improved my students' performance significantly.
Subcellular surgery and nanosurgery, at CIMIT/Lester Wolfe Workshop on Femtosecond Microscopy & Microsurgery, Wellman Center for Photomedicine (Boston, MA), Tuesday, April 18, 2006:
We use femtosecond laser pulses to manipulate sub-cellular structures inside live and fixed cells. Using only a few nanojoules of laser pulse energy, we are able to selectively disrupt individual mitochondria in live bovine capillary epithelial cells, and cleave single actin fibers in the cell cytoskeleton network of fixed human fibro-blast cells. We have also used the technique to micromanipulate the neural network of C. Elegans, a small nematode. Our laser scalpel can snip individual axons without causing any damage to surrounding tissue, allowing us to study the function of individual... Read more about Subcellular surgery and nanosurgery
Wrapping light around a hair, at IEEE Communications Society Meeting (Waltham, MA), Thursday, February 9, 2006:
Can light be guided by a fiber whose diameter is much smaller than the wavelength of the light? Can we mold the flow of light on the micrometer scale so it wraps, say, around a hair? Until recently the answer to these questions was ‘no’. We developed a technique for drawing long, free-standing silica wires with diameters down to 50 nm that have a surface smoothness at the atomic level and a high uniformity of diameter. Light can be launched into these silica nanowires by optical evanescent coupling and the wires allow low-loss single-mode operation. They can be bent sharply, making it... Read more about Wrapping light around a hair
Supercontinuum in silica nanowires, at Photonics West 2006 (San Jose, CA), Thursday, January 26, 2006:
Fibers are gaining widespread acceptance for generating ultra-broad spectra. The most common approach involves a photonic crystal fiber with carefully designed core size and dispersion characteristics. Although this system provides confinement of light to micrometer (and sometimes sub-micrometer) dimensions, this confinement is achieved at the expense of a complex core structure. An alternative to microstructured fibers is the use of silica fibers with sub-wavelength diameters whose waveguiding properties were initially demonstrated by our group. Silica nanowires are a model system because... Read more about Supercontinuum in silica nanowires

Pages