%0 Thesis %D 2006 %T Application of femtosecond lasers for subcellular nanosurgery %A I. Zaharieva Maxwell %X This dissertation o ers a study of femtosecond laser disruption in single cells. Cells and tissues do not ordinarily absorb light in the near-IR wavelength range of femtosecond lasers. However, the peak intensity of a femtosecond laser pulse is very high and material disruption is possible through nonlinear absorption and plasma generation. Because the pulse duration is very short, it is possible to reach the intensity of optical breakdown at only nanojoules of energy per pulse. The low energy deposition and the high spatial localization of the nonlinear absorption, make femtosecond laser pulses an ideal tool for minimally disruptive subcellular nanosurgery. We show definitively that there can be bulk ablation within a single cell by studying the disrupted region under a transmission electron microscope. The width of the ablated area can be as small as 250 nm in diameter at energies near the ablation threshold. We also studied the e ect of the laser repetition rate on the subcellular disruption threshold. We compared the pulse energies for kHz and MHz pulse trains, and found that in the MHz regime heat accumulation in the focal volume needs to be accounted for. For this repetition rate the minimum pulse energy necessary for disruption depends on the laser irradiation time. We used femtosecond laser nanosurgery to probe tension in actin stress fibers in living endothelial cells. By severing an individual stress fiber and visualizing its retraction, we showed that actin carries prestress in adherent, non-contractile cells. By plating the cells on softer, more compliant substrates, we measured the deflection of the substrate and extrapolated the force contribution of a stress filament on total amount of force exerted by the cell. %I Harvard University %P 149 %G eng %U /files/mazur/files/pub_596.pdf %9 phd