Femtosecond Laser Ablation Reveals Antagonistic Sensory and Neuroendocrine Signaling that Underlie C. elegans Behavior and Development

Citation:

S. H. Chung, A. Schmalz, R. Clarissa Ruiz, C. V. Gabel, and E. Mazur. 2013. “Femtosecond Laser Ablation Reveals Antagonistic Sensory and Neuroendocrine Signaling that Underlie C. elegans Behavior and Development.” Cell Reports, 4, Pp. 316–326. Publisher's Version

Abstract:

The specific roles of neuronal subcellular compo- nents in behavior and development remain largely unknown, even though advances in molecular biology and conventional whole-cell laser ablation have greatly accelerated the identification of contrib- utors at the molecular and cellular levels. We system- atically applied femtosecond laser ablation, which has submicrometer resolution in vivo, to dissect the cell bodies, dendrites, or axons of a sensory neuron (ASJ) in Caenorhabditis elegans to determine their roles in modulating locomotion and the develop- mental decisions for dauer, a facultative, stress- resistant life stage. Our results indicate that the cell body sends out axonally mediated and hormonal sig- nals in order to mediate these functions. Further- more, our results suggest that antagonistic sensory dendritic signals primarily drive and switch polarity between the decisions to enter and exit dauer. Thus, the improved resolution of femtosecond laser ablation reveals a rich complexity of neuronal signaling at the subcellular level, including multiple neurite and hormonally mediated pathways depen- dent on life stage.
Last updated on 07/24/2019