Intermediate Band Conduction in Femtosecond-Laser Hyperdoped Silicon


M. Sher and E. Mazur. 2014. “Intermediate Band Conduction in Femtosecond-Laser Hyperdoped Silicon.” Appl. Phys. Lett., 105, Pp. 032103-1–032103-5. Publisher's Version


We use femtosecond-laser hyperdoping to introduce non-equilibrium concentrations of sulfur into silicon and study the nature of the resulting intermediate band. With increasing dopant concentration, the sub-bandgap absorption increases. To better understand the dopant energetics, we perform temperature-dependent Hall and resistivity measurements. We analyze the carrier concentration and the energetics of the intermediate band using a two- band model. The temperature-dependence of the carrier concentration and resistivity suggests that the dopant concentration is below the insulator-to-metal transition and that the samples have a localized intermediate band at 70 meV below the conduction band edge.
Last updated on 07/24/2019