Micromachining and material change characterization using femtosecond laser oscillators

Citation:

C. B. Schaffer, J. Aus der Au, E. Mazur, and J. A. Squier. 2002. “Micromachining and material change characterization using femtosecond laser oscillators.” In . Photonics West. Publisher's Version

Abstract:

We use third harmonic generation (THG) microscopy to image waveguides and single-shot structural modifications produced in bulk glass using femtosecond laser pulses. THG microscopy reveals the internal structure of waveguides written with a femtosecond laser oscillator, and gives a three-dimensional view of the complicated morphology of the structural changes produced with single, above-threshold femtosecond pulses. We find that THG microscopy is as sensitive to refractive index change as differential interference contrast microscopy, while also offering the three-dimensional sectioning capabilities of a nonlinear microscopy technique. It is now possible to micromachine three- dimensional optical devices and to image these structures in three dimensions, all with a single femtosecond laser oscillator.
Last updated on 07/24/2019