Optical vibration sensor fabricated by femtosecond laser micromachining


M. Kamata, M. Obara, R. R. Gattass, L. R. Cerami, and E. Mazur. 2005. “Optical vibration sensor fabricated by femtosecond laser micromachining.” Appl. Phys. Lett., 87, Pp. 051106-1–051106-3. Publisher's Version


We fabricated an optical vibration sensor using a high-repetition rate femtosecond laser oscillator. The sensor consists of a single straight waveguide written across a series of three pieces of glass. The central piece is mounted on a suspended beam to make it sensitive to mechanical vibration, acceleration, or external forces. Displacement of the central piece is detected by measuring the change in optical transmission through the waveguide. The resulting sensor is small, simple, and requires no alignment. The sensor has a linear response over the frequency range 20 Hz 2 kHz, can detect accelerations as small as 0.01 m/s2, and is nearly temperature independent.
Last updated on 07/24/2019