Optical waveguide fabrication for integrated photonic devices

Citation:

R. R. Gattass, L. R. Cerami, and E. Mazur. 2005. “Optical waveguide fabrication for integrated photonic devices.” In . Nano photonics and functional device technology. Publisher's Version

Abstract:

The dynamic nature of future optical networks requires high levels of integration, fast response times, and adaptability of the optical components. Laser micromachining circumvents the limitations of planar integration, allowing both three-dimensional integration and dense packaging of optical devices without alignment requirements. Femtosecond micromachining enables the analog of circuit printing by wiring light between photonic devices in addition to printing the actual photonic device into a single or multiple substrates. Femtosecond laser oscillator-only micromachining has several advantages over amplified femtosecond laser micromachining: easy control over the size of the structures without changing focusing, polarization-independent structures, lower initial investment cost and higher-speed manufacturing. In this paper we review recent results obtained in the field of femtosecond micromachining. Keywords: Femtosecond, micromachining, nonlinear absorption.
Last updated on 07/24/2019