Femtosecond laser microfabrication

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur. 2008. “3D cell migration studies using two-photon engineered polymer scaffolds.” Advanced Materials, 20, Pp. 4494–4498. Publisher's VersionAbstract
We use two-photon polymerization to fabricate 3D scaffolds with precise control over pore size and shape for studying cell migration in 3D. These scaffolds allow movement of cells in all directions. The fabrication, imaging, and quantitative analysis method developed here can be used to do systematic cell studies in 3D.
D. Souza Correa, P. Tayalia, E. Mazur, and C. R. Mendonca. 2006. “Complex microstructures fabricated via two-photon absorption polymerization.” In . Macro 2006 - 41st Symposium on Macromolecules. Publisher's VersionAbstract
Using acrylic resin and Lucirin TPO-L as photoinitiator, we fabricated complex microstructures via the process of two photon absorption (2PA) polymerization. We measured the 2PA cross-section of Lucirin TPO-L, which is the parameter responsible for the nonlinear process, and the value found is among the ones reported in the literature for common photoinitiators. We also carried out quantum chemistry calculation in order to correlate the nonlinear optical properties of this photoinitiator to its molecular structure.
C. R. Mendonca, T. Baldacchini, P. Tayalia, and E. Mazur. 2007. “Reversible birefringence in microstructures fabricated by two-photon absorption polymerization.” J. Appl. Phys., 103, Pp. 013109-1–013109-4. Publisher's VersionAbstract
This paper reports the fabrication of birefringent microstructures using two- photon absorption polymerization. The birefringence is caused by a light-driven molecular orientation of azoaromatic molecules (Disperse Red 13) upon excitation with an Ar+ laser at 514.5 nm. For an azoaromatic dye content of 1% by weight we obtain a birefringence of 5x10-5. This birefringence can be completely erased by overwriting the test spot with circularly polarized laser light or by heating the sample. Our results open the door to the development of new applications in optical data storage, wave guiding, and optical circuitry.
A. Hu, G. Deng, S. Denis Courvoisier, O. Reshef, C. C. Evans, E. Mazur, and Y. Norman. Zhou. 2013. “Femtosecond laser induced surface melting and nanojoining for plasmonic circuits”. Publisher's VersionAbstract
Femtosecond laser induced nonthermal processing is an emerging nanofabrication technique for delicate plasmonic devices. In this work we present a detailed investigation on the interaction between ultra-short pulses and silver nanomaterials, both experimentally and theoretically. We systematically study the laser-silver interaction at a laser fluent from 1 J/m2 to 1 MJ/m2. The optimal processing window for welding of silver nanowires occurs at fluences of 200-450 J/m2. The femtosecond laser-induced surface melting allows precise welding of silver nanowires for "T” and “X” shape circuits. These welded plasmonic circuits are successfully applied for routining light propagation.
C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur. 2001. “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy.” Opt. Lett., 26, Pp. 93–95. Publisher's VersionAbstract
Using tightly-focused femtosecond laser pulses of just 5 nJ we produce optical breakdown and structural change in bulk transparent materials, and demonstrate micromachining of transparent materials using unamplified lasers. We present measurements of the threshold for structural change in Corning 0211 glass, as well as a study of the morphology of the structures produced by single and multiple laser pulses. At high repetition-rate, multiple pulses produce a structural change dominated by cumulative heating of the material by successive laser pulses. Using this cumulative heating effect, we write single-mode optical waveguides inside bulk glass using only a laser oscillator.
L. Tong, R. R. Gattass, I. Zaharieva Maxwell, J. B. Ashcom, and E. Mazur. 2006. “Optical loss measurements in femtosecond laser written waveguides in glass.” Opt. Commun., 259, Pp. 626–630. Publisher's VersionAbstract
The optical loss is an important parameter for waveguides used in integrated optics. We measured the optical loss in waveguides written in silicate glass slides with high repetition-rate (MHz) femtosecond laser pulses. The average transmission loss of straight waveguides is about 0.3 dB/mm at a wavelength of 633 nm and 0.05 dB/mm at a wavelength of 1.55 m. The loss is not polarization dependent and the waveguides allow a minimum bending radius of 36 mm without additional loss. The average numerical aperture (NA) of the waveguides is 0.065 at a wavelength of 633 nm and 0.045 at a wavelength of 1.55 m. In straight waveguides more than 90% of the transmission loss is due to scattering.
H. H. Gandhi, E. Mazur, K. Phillips, and S. K. Sundaram. 2015. “Ultrafast Laser Processing Of Materials: A Review.” Advances In Optics and Photonics, 7, Pp. 684–712. Publisher's VersionAbstract
We present an overview of the different processes that can result from focusing an ultrafast laser light in the femtosecond–nanosecond time regime on a host of materials, e.g., metals, semiconductors, and insulators. We summarize the physical processes and surface and bulk applications and highlight how femtosecond lasers can be used to process various materials. Throughout this paper, we will show the advantages and disadvantages of using ultrafast lasers compared with lasers that operate in other regimes and demonstrate their potential for the ultrafast processing of materials and structures.
C. R. Mendonca, D. S. Correa, T. Baldacchini, P. Tayalia, and E. Mazur. 2008. “Two-photon absorption spectrum of Lucirin TPO-L.” Appl. Phys. A, 90, Pp. 633–636. Publisher's VersionAbstract
Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Moreover, from the two-photon absorption spectrum we determined that Lucirin TPO-L radical quantum yield is independent of the wavelength. Despite its small two-photon absorption cross- section, it is possible to fabricated excellent microstructures by two-photon polymerization microfabrication due to the high polymerization quantum yield (0.99) of Lucirin TPO-L. These results show that optimization of the two-photon absorption cross-section is not the only factor to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.
J. B. Ashcom, R. R. Gattass, C. B. Schaffer, and E. Mazur. 2006. “Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica.” J. Opt. Soc. Am. B, 23, Pp. 2317–2322. Publisher's VersionAbstract
Competing nonlinear optical effects are involved in the interaction of femtosecond laser pulses with transparent dielectrics: supercontinuum generation and multiphoton-induced bulk damage. We measured the threshold energy for supercontinuum generation and bulk damage in fused silica using numerical apertures ranging from 0.01 to 0.65. The threshold for supercontinuum generation exhibits a minimum near 0.05 NA, and increases quickly above 0.1 NA. For numerical apertures greater than 0.25, we observe no supercontinuum generation. The extent of the blue broadening of the supercontinuum spectrum decreases significantly as the numerical aperture is increased from 0.01 to 0.08, showing that loose focusing is important for generating the broadest supercontinuum spectrum. Using a light scattering technique to detect the onset of bulk damage, we confirmed bulk damage at all numerical apertures studied. At high numerical aperture, the damage threshold is well below the critical power for self-focusing.
S. Kang, K. Vora, and E. Mazur. 2015. “One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix.” Nanotechnology, 26, Pp. 1–6. Publisher's VersionAbstract
Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metaldielectric optical and THz metamaterial devices that are not feasible with alternate techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome these previous limitations such as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency well- matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in the fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.
C. B. Schaffer, J. Aus der Au, E. Mazur, and J. A. Squier. 2002. “Micromachining and material change characterization using femtosecond laser oscillators.” In . Photonics West. Publisher's VersionAbstract
We use third harmonic generation (THG) microscopy to image waveguides and single-shot structural modifications produced in bulk glass using femtosecond laser pulses. THG microscopy reveals the internal structure of waveguides written with a femtosecond laser oscillator, and gives a three-dimensional view of the complicated morphology of the structural changes produced with single, above-threshold femtosecond pulses. We find that THG microscopy is as sensitive to refractive index change as differential interference contrast microscopy, while also offering the three-dimensional sectioning capabilities of a nonlinear microscopy technique. It is now possible to micromachine three- dimensional optical devices and to image these structures in three dimensions, all with a single femtosecond laser oscillator.
K. Vora, S. Kang, S. Shukla, and E. Mazur. 2012. “Three-dimensional silver nanostructure fabrication through multiphoton photoreduction.” In . Proceedings of the SPIE. Publisher's VersionAbstract
Metal nanofabrication techniques have become increasingly important for photonic applications with rapid developments in plasmonics, nanophotonics and metamaterials. While two-dimensional (2D) techniques to create high resolution metal patterns are readily available, it is more difficult to fabricate 3D metal structures that are required for new applications in these fields. We present a femtosecond laser technique for 3D direct-writing silver nanostructures embedded inside a polymer. We induce the photoreduction of silver ions through non-linear absorption in a sample doped with a silver salt. Utilizing nonlinear optical interactions between the chemical precursors and femtosecond pulses, we limit silver-ion photoreduction processes to a focused volume smaller than that of the diffraction-limit. The focal volume is scanned rapidly in 3D by means of a computer-controlled translation stage to produce complex patterns. Our technique creates dielectric-supported silver structures, enabling the nanofabrication of silver patterns with disconnected features in 3D. We obtain 300 nm resolution. © 2012 COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
R. R. Gattass, L. R. Cerami, and E. Mazur. 2005. “Optical waveguide fabrication for integrated photonic devices.” In . Nano photonics and functional device technology. Publisher's VersionAbstract
The dynamic nature of future optical networks requires high levels of integration, fast response times, and adaptability of the optical components. Laser micromachining circumvents the limitations of planar integration, allowing both three-dimensional integration and dense packaging of optical devices without alignment requirements. Femtosecond micromachining enables the analog of circuit printing by wiring light between photonic devices in addition to printing the actual photonic device into a single or multiple substrates. Femtosecond laser oscillator-only micromachining has several advantages over amplified femtosecond laser micromachining: easy control over the size of the structures without changing focusing, polarization-independent structures, lower initial investment cost and higher-speed manufacturing. In this paper we review recent results obtained in the field of femtosecond micromachining. Keywords: Femtosecond, micromachining, nonlinear absorption.
C. R. Mendonca, T. Shih, and E. Mazur. 2008. “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores.” Opt. Express, 16, Pp. 200–206. Publisher's VersionAbstract
We report on the femtosecond-laser micromachining of poly(methyl methacrylate) (PMMA) films doped with nonlinear azoaromatic chromophores: Disperse Red 1, Disperse Red 13 and Disperse Orange 3. We study the conditions for controlling chromophore degradation during the micromachining of PMMA doped with each chromophore. Furthermore, we successfully used fs-micromachining to fabricate optical waveguides within a bulk sample of PMMA doped with these azochromophores.
J. B. Ashcom, C. B. Schaffer, and E. Mazur. 2002. “Numerical aperture dependence of damage and white light generation from femtosecond laser pulses in bulk fused silica.” In . Photonics West. Publisher's VersionAbstract
The femtosecond laser has become an important tool in the micromachining of transparent materials. In particular, focusing at high numerical aperture enables structuring the bulk of materials. At low numerical aperture and comparable energy, focused femtosecond pulses result in white light or continuum generation. It has proven difficult to damage transparent materials in the bulk at low NA. We have measured the threshold energy for continuum generation and for bulk damage in fused silica for numerical apertures between 0.01 and 0.65. The threshold for continuum generation exhibits a minimum near 0.05 NA, and increases quickly near 0.1 NA. Greater than 0.25 NA, no continuum is observed. The extent of the anti-stokes pedestal in the continuum spectrum decreases strongly as the numerical aperture is increased to 0.1, emphasizing that slow focusing is important for the broadest white light spectrum. We use a sensitive light scattering technique to detect the onset of damage. We are able to produce bulk damage at all numerical apertures studied. At high numerical aperture, the damae threshold is well below the critical power for self-focusing, which allows the breakdown intensity to be determined. Below 0.25 NA, the numerical aperture dependence suggests a possible change in damage mechanism.

Pages