Optical hyperdoping: black silicon

E. Landis, K. Phillips, E. Mazur, and C. M. Friend. 2012. “Formation of nanostructured TiO2 by femtosecond laser irradiation of titanium in O2.” J. Appl. Phy., 112, Pp. –. Publisher's VersionAbstract
We use femtosecond laser irradiation of titanium metal to create nanometer scale laser-induced periodic surface structures and study the influence of atmospheric composition on these surface structures. We find that gas composition and pressure affect the chemical composition of the films, but not the surface morphology. We demonstrate that irradiation of titanium in oxygen containing atmospheres forms a highly stable surface layer of nanostructured amorphous titanium dioxide.
M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H.A. Stone, and E. Mazur. 2008. “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water.” Nano Leters, 8, Pp. 2087–2091. Publisher's VersionAbstract
We report on the formation of high-density regular arrays of nanometer-scale rods using femtosecond laser irradiation of a silicon surface immersed in water. The resulting surface exhibits both micrometer-scale and nanometer-scale structures. The micrometer-scale structure consists of spikes of 5-10 µm width, which are entirely covered by nanometer-scale rods that are roughly 50 nm wide and that protrude perpendicularly from the micrometer-scale spikes. The formation of the nanometer-scale rods involves several processes: refraction of laser light in highly excited silicon, interference of scattered and refracted light, rapid cooling in water, and capillary instabilities.
C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. J. Younkin, J. A. Levinson, E. Mazur, R. M. Farrel, P. Gothoskar, and A. Karger. 2001. “Near-unity below-band gap absorption by microstructured silicon.” Appl. Phys. Lett., 78, Pp. 1850–1852. Publisher's VersionAbstract
We increased the absorptance of light by silicon to approximately 90% from the near ultraviolet (0.25 m) to the near infrared (2.5 m) by surface microstructuring using laser-chemical etching. The remarkable absorptance most likely comes from a high density of impurities and structural defects in the silicon lattice, enhanced by surface texturing. Microstructured avalanche photodiodes show significant enhancement of below-band gap photocurrent generation at 1.06 and 1.31 m, indicating promise for use in infrared photodetectors.

Pages