Other education

N. Lasry, N. Finkelstein, and E. Mazur. 2009. “Are most people too dumb for physics?” Physics Teacher, 47, Pp. 418–422. Publisher's VersionAbstract
In a recent article in The Physics Teacher, Michael Sobel claims (as do many teachers) that physics is in a "special category of hard" and is usually taken only by a "certain sort of very bright student." The appealing, yet suspiciously conceited, notion that physics is only for smart or industrious people is questionable. We offer this response as a means to initiate a dialogue on how we engage with students in our physics courses.
L. Tucker, R. E. Scherr, T. Zickler, and E. Mazur. 2016. “Exclusively visual analysis of classroom group interactions.” Phys. Rev. Phys. Educ. Res., 12, Pp. 020142-1–020142-9. Publisher's VersionAbstract
Large-scale audiovisual data that measure group learning are time consuming to collect and analyze. As an initial step towards scaling qualitative classroom observation, we qualitatively coded classroom video using an established coding scheme with and without its audio cues. We find that interrater reliability is as high when using visual data only—without audio—as when using both visual and audio data to code. Also, interrater reliability is high when comparing use of visual and audio data to visual-only data. We see a small bias to code interactions as group discussion when visual and audio data are used compared with video-only data. This work establishes that meaningful educational observation can be made through visual information alone. Further, it suggests that after initial work to create a coding scheme and validate it in each environment, computer-automated visual coding could drastically increase the breadth of qualitative studies and allow for meaningful educational analysis on a far greater scale.
N. Lasry, J. Guillemette, M. Dugdale, E. Charles, and E. Mazur. 2016. “Peut-on apprendre sans désapprendre?” Pédagogie Collégiale, 29, Pp. 27–31. Publisher's VersionAbstract
D’après le romancier français Marcel Proust, «Le véritable voyage de découverte ne consiste pas à chercher de nouveaux paysages, mais à avoir de nouveaux yeux » (Proust, 1923). Ainsi, l’un des principaux objectifs de l’enseignement des sciences est d’aider les étudiants à modifier leur vision du monde. Cela est particulièrement important en physique, car les étudiants ont souvent des idées préconçues qui vont à l’encontre de ce qu’on tente de leur enseigner (Bransford, Brown et Cocking, 2000 ; Knight et Burciaga, 2004 ; Redish, 2003), précisément en ce qui concerne les concepts newtoniens. Parmi ces des décennies (Clement, 1982 ; Halloun et Hestenes, 1985a ; Halloun et Hestenes, 1985b ; Minstrell, 1982 ; Viennot, 1979), on estime qu'un grand nombre sont profondément ancrées dans leur esprit et difficiles à modifier (Dunbar, Fugelsang et Stein, 2007 ; Posner et collab., 1982 ; Vosniadou, 1992 et 1994). Nous pré- sentons ici quelques découvertes qui ont transformé notre propre perception de la façon dont les étudiants apprennent la physique. Plusieurs des idées que nous soumettons pourraient aussi s'appliquer à d'autres disciplines que ce soit dans un programme préuniversitaire ou technique.

Pages