The surprising world where optical properties approach zero

Bertman Lecture Wesleyan University Middletown, CT, 2 May 2023

The surprising world where optical properties approach zero

Bertman Lecture Wesleyan University Middletown, CT, 2 May 2023

extreme spreading

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

where

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

where

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

and
$$n=\sqrt{\epsilon\mu}$$
 .

governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

 $\frac{1}{-c}$

n

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

 (\mathbf{i})

where
$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}}c =$$

and
$$n = \sqrt{\epsilon \mu}$$
 .

In dispersive media $n = n(\omega)$.

$$n = \sqrt{\varepsilon \mu}$$

$$n = \sqrt{\varepsilon \mu}$$

$$n = \sqrt{\mathcal{E} \mathcal{V}}$$

So $n(\omega)$ determined by response of material to external fields

 $\epsilon(\omega)$ measure of attenuation of electric field

 $n = \sqrt{\mathcal{E} \mathcal{V}}$

Lorentz oscillator

for a strong (dielectric) resonance ε can become negative

valence electrons in dielectric then behave like a plasma

with plasma frequency above the resonance

(and far below the UV region)

Index also determined by magnetic response

$$n = \sqrt{\epsilon \mu}$$

Index also determined by magnetic response

and magnetic response shows similar resonances

Magnetic response

but magnetic resonances occur below optical frequencies

Magnetic response

so, in optical regime, $\mu \approx 1$

Index of refraction

$$n = \sqrt{\varepsilon \mu}$$

Both e and μ are complex and their real parts can be negative.

Index of refraction

$$n = \sqrt{\varepsilon \mu}$$

Both ε and μ are complex and their real parts can be negative.

What happens when $\operatorname{Re}\varepsilon$ and/or $\operatorname{Re}\mu$ is negative?

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

Index

$$n = \sqrt{|\varepsilon||\mu|} e^{i\frac{\theta+\varphi}{2}}$$

$$\varepsilon = |\varepsilon| e^{i\theta} \qquad \mu = |\mu| e^{i\phi}$$

Index

$$n = \sqrt{|\varepsilon||\mu|} e^{i\frac{\theta+\varphi}{2}}$$

$$\varepsilon = |\varepsilon| e^{i\theta}$$
 $\mu = |\mu| e^{i\phi}$

Index

$$n \neq \sqrt{|\varepsilon||\mu|} e^{i\frac{\theta+\varphi}{2}}$$

Q: Is this only possible value?

- 1. yes
- 2. no, there's one more
- 3. there are many more
- 4. it depends

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\mathcal{E}||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\mathcal{E}||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\varepsilon||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\varepsilon||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{|\varepsilon||\mu|} e^{i\left[\frac{\theta+\phi}{2}+\pi\right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\left| \boldsymbol{\varepsilon} \right| \left| \boldsymbol{\mu} \right|} e^{i \left[\frac{\theta + \phi}{2} + \pi \right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Can add 2π to exponent

$$e^{+i(\theta+\phi)} = e^{+i[\theta+\phi+2\pi]}$$

and so

$$n = \sqrt{\left| \boldsymbol{\varepsilon} \right| \left| \boldsymbol{\mu} \right|} e^{i \left[\frac{\theta + \phi}{2} + \pi \right]}$$

but...

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Q: Is this the only possible value?

- 2. no, there's one more
- 3. there are many more
- 4. it depends

Q: Is this the only possible value?

1. yes 🖌

2. no, there's one more 🖌

3. there are many more

4. it depends

Q: Is this the only possible value?

3. there are many more

4. it depends 🖌

- **Q:** Is this the only possible value?
 - 1. yes 🖌
 - 2. no, there's one more 🖌
 - 3. there are many more
 - 4. it depends 🖌

To find *n* (passive materials):

- 1. Draw line that bisects ε and μ
- 2. Choose upper branch

What happens when $\operatorname{Re} \varepsilon$ and/or $\operatorname{Re} \mu$ is negative?

For certain values of ε and μ we can get a *negative* $\operatorname{Re}(n)!$

Q: Must both $\operatorname{Re}\varepsilon < 0$ and $\operatorname{Re}\mu < 0$

to get a negative $\operatorname{Re}(n)$?

1. yes

2. no

Q: Must both $\operatorname{Re}\varepsilon < 0$ and $\operatorname{Re}\mu < 0$

to get a negative $\operatorname{Re}(n)$?

1. yes

2. no 🖌

However, need magnetic response

to achieve $\operatorname{Re}(n) \le 0!$

Remember

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

Remember

$$k = \frac{2\pi n}{\lambda_o} = \frac{2\pi (n' + in'')}{\lambda_o} = k' + ik''$$

$$E = E_o e^{i(kx - \omega t)} = E_o e^{-k''x} e^{i(k'x - \omega t)}$$

When $\operatorname{Re}(n) < 0$, k' < 0, and so phase velocity reversed!

When $\operatorname{Re}(n) < 0$, k' < 0, and so phase velocity reversed!

classification of (non-lossy) materials

classification of (non-lossy) materials

classification of (non-lossy) materials

common materials very limited

common materials very limited

common materials very limited

What happens on the axes?

what if we let $\varepsilon = 0$?

what if we let $\varepsilon = 0$?

Q: If n = 0, which of the following is true?

- 1. the frequency goes to zero.
- 2. the phase velocity becomes infinite.
- 3. both of the above.
- 4. neither of the above.

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o \ e^{i(kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o \ e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o \ e^{i(kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o \ e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c \longrightarrow \infty$$

What about WAVE PROPAGATION AND GROUP VELOCITY Member of the National Academy of Sciences LEON BRILLOUIN index 1

index

1

index

1

1

"tunneling with infinite decay length"

how?

$$n = \sqrt{\epsilon \mu}$$

but $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

how?

$$n = \sqrt{\varepsilon \mu}$$

but $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

where

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

how?

$$\varepsilon, \mu \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

where

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \qquad \text{finite!}$$

use array of dielectric rods

incident electromagnetic wave ($\lambda_{eff} \approx a$)

produces an electric response...

... but different electric fields front and back...

...induce different polarizations on opposite sides...

...causing a current loop...

...which, in turn, produces an induced magnetic field

adjust design so electrical and magnetic resonances coincide

adjustable parameters

d = 422 nm, a = 690 nm, n = 1.57 (SU8)

Can make this in any shape!

SU8 slab waveguide

Si waveguide

SU8 slab waveguide

prism

Si waveguide

On-chip zero-index prism

Wavelength dependence of refraction angle

Wavelength dependence of refraction angle

Wavelength dependence of refraction angle

Wavelength dependence of refraction angle

Wavelength dependence of index

$$n_{\rm prism} = n_{\rm slab} \frac{\sin \alpha}{\sin 45^\circ}$$

Wavelength dependence of index

Wavelength dependence of index

pillar array

pillar array

airhole array

airhole array

airhole array

airhole array

1D ZIM waveguide

waveguiding

waveguiding

waveguiding

direct observation of effective wavelength!!

n=0

(extreme) opportunities

relaxed phase matching constraints as $k \rightarrow 0$

(extreme) opportunities

phase velocity

group velocity

how can we localize light?

1 index

engineer materials, for extreme optics

Zero-Index Metamaterials:

Yang Li Shota Kita Phil Muñoz Orad Reshef, Daryl Vulis Mei Yin Lysander Christakis Zin Lin, Cleaven Chia Olivia Mello Haoning Tang **Zero-Index Waveguide:**

Orad Reshef Justin Gagnon Marko Loncar Phil Muñoz Daryl Vulis Twisted Bilayer Photonic Crystals

Haoning Tang Fan Du Stephen Carr Xueqi Ni Huanyu Zhou Vishantak Srikrishna Chentong Li Clayton DeVault Michael Lobet

Profs. Bob Boyd , Nader Engheta, Alan Willner

National Science Foundation DARPA Harvard Center for Nanoscale Systems Harvard Quantum Initiative

mazur.harvard.edu

Follow me!

@eric_mazur