Extreme optics with zero index metamaterials

PQE2020 Snowbird, UT, 7 January 2020

Extreme optics with zero index metamaterials

@eric_mazur

B

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

solution

$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)} \longrightarrow \vec{E} = \vec{E}_o e^{-i\omega t}$$

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c \longrightarrow \infty$$

how?

$$n = \sqrt{\epsilon \mu}$$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

how?

$$n = \sqrt{\varepsilon \mu}$$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}}$$

how?

$$\varepsilon, \mu \to 0$$
 $n = \sqrt{\varepsilon \mu} \to 0$

but ϵ and μ also determine reflectivity

$$R = \frac{Z - 1}{Z + 1}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} \qquad \text{finite!}$$

How to fabricate?

zero index

Can make this in any shape!

On-chip zero-index prism

Wavelength dependence of index

Wavelength dependence of index

Wavelength dependence of index

nature november 2015 vol 9 no www.nature.com/naturephotonics

Zero-index metamaterials

More info: download paper!

PHASE-CHANGE MATERIALS Multi-level memory MID-INFRARED Control

MID-INFRARED SOURCES Powerful pulse train

OPTICAL COMPUTING Analog approach

simplify fabrication

pillar array

simplify fabrication

pillar array

airhole array

simplify fabrication

airhole array

airhole array

airhole array

1D ZIM waveguide

direct observation of effective wavelength!!

comparison of experiment and simulation

1 zero index

comparison of experiment and simulation

Exciting applications ahead

n

Exciting applications ahead

$$n \approx n_0 + \frac{\chi_R^{(3)}}{2n_0} |E(\omega)|^2$$

backward idler intensity

1 zero index

forward idler intensity

1 zero index

Yang Li, Shota Kita, Phil Muñoz, Orad Reshef, Daryl Vulis, Mei Yin, Lysander Christakis, Zin Lin, Cleaven Chia, Olivia Mello, Haoning Tang, Justin Gagnon, Marko Lončar

Profs. Bob Boyd , Nader Engheta, Alan Willner

National Science Foundation DARPA Harvard Center for Nanoscale Systems

ericmazur.com

Follow me!

