Active learning and interactive lectures Part II: Discussion and brains-on demonstration ### **Outline** #### Some options: - Let's try it! - Feedback methods - Research: providing the basis for change - Problems with problems - Resources - Barriers to reform Consider a rectangular metal plate with a circular hole in it. Consider a rectangular metal plate with a circular hole in it. When the plate is uniformly heated, the diameter of the hole - 1. increases. - 2. stays the same. - 3. decreases. The distance between the atoms increases uniformly A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond. A boat carrying a large boulder is floating on a small pond. The boulder is thrown overboard and sinks to the bottom of the pond. After the boulder sinks to the bottom of the pond, the level of the water in the pond is - 1. higher than - 2. the same as - 3. lower than it was when the boulder was in the boat. When we hold a page of printed text in front of a mirror, the text on the image in the mirror runs from right to left: ### The New York Times When we hold a page of printed text in front of a mirror, the text on the image in the mirror runs from right to left: ### The New York Times Why is it that right and left are interchanged and not top and bottom? Because: - 1. the mirror is oriented vertically. - 2. we have two eyes in the horizontal plane. - 3. the Earth's gravitation is directed downward. - 4. a habit we have when looking at images in a mirror. - 5. It only appears to run from left to right. Consider an object that floats in water, but sinks in oil. When the object floats in water, half of it is submerged. Consider an object that floats in water, but sinks in oil. When the object floats in water, half of it is submerged. If we slowly pour the oil on top of the water so it completely covers the object, the object - 1. moves up. - 2. stays in the same place. - 3. moves down. **Show of hands:** easy, but only moderately effective Flashcards: simple and effective #### Flashcards: simple and effective Meltzer and Mannivanan, South Eastern Louisiana University Infrared transmitters (PRS): easy collection of data #### Infrared transmitters (PRS): easy collection of data Kristy Beauvais, Concord Carlisle High School Evaluate assessment by comparing student performance on various kinds of problems #### who benefits from the ConcepTests? #### who benefits from the ConcepTests? #### even the best students are challenged #### even the best students are challenged On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. How long do you have to wait before someone frees up a space? On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. How long do you have to wait before someone frees up a space? **Requires:** Assumptions Developing a model Applying that model On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for 2 hours. How long do you have to wait before someone frees up a space? On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for 2 hours. How long do you have to wait before someone frees up a space? **Requires:** Developing a model Applying that model On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for 2 hours. Assuming people leave at regularly-spaced intervals, how long do you have to wait before someone frees up a space? On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. On average people shop for 2 hours. Assuming people leave at regularly-spaced intervals, how long do you have to wait before someone frees up a space? **Requires:** Applying a (new) model ## **Problems with problems** On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area, where people are know to shop, on average, for 2 hours. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. How long do you have to wait before someone frees up a space? ## **Problems with problems** On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area, where people are know to shop, on average, for 2 hours. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. How long do you have to wait before someone frees up a space? $$t_{wait} = \frac{T_{shop}}{N_{spaces}}$$ ## **Problems with problems** On a Saturday afternoon, you pull into a parking lot with unmetered spaces near a shopping area, where people are know to shop, on average, for 2 hours. You circle around, but there are no empty spots. You decide to wait at one end of the lot, where you can see (and command) about 20 spaces. How long do you have to wait before someone frees up a space? **Requires:** **Using a calculator** $$t_{wait} = \frac{T_{shop}}{N_{spaces}}$$ **Books with ConcepTests:** • Physics (Prentice Hall) **Books with ConcepTests:** Physics (Prentice Hall) Chemistry (Prentice Hall) **Books with ConcepTests:** Physics (Prentice Hall) Chemistry (Prentice Hall) Astronomy (Prentice Hall) **Books with ConcepTests:** Physics (Prentice Hall) Chemistry (Prentice Hall) Astronomy (Prentice Hall) Calculus (Wiley) Information on Just-in-Time-Teaching: - Prentice Hall book - http://www.jitt.org #### **Videos:** - Thinking together - From questions to concepts http://www.ankerpub.com **Course management:** http://deas.harvard.edu/ilt **Challenges:** - skepticism - growing pains - limited circle of influence Two things to watch out for After changing, things might get worse before they get better! Better understanding leads to more — not fewer — questions! (must recognize confusion as step towards understanding) Things to do: - take data - motivate students - be prepared for initial adjustments ### **Funding:** **National Science Foundation** for a copy of this presentation: http://mazur-www.harvard.edu