AN INTRODUCTION TO FEMTOSECOND LASER SCIENCE

Eric Mazur Harvard University

Short Course SC541 Photonics West 2005, San Jose, CA

Outline

linear and nonlinear propagation

femtosecond measurements

examples

linear and nonlinear propagation

femtosecond measurements

examples

- time resolution
- high intensity
- nonlinear optics
- new physics

Governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

Governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

where

$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

Governed by wave equation

$$\nabla^2 \vec{E} - \frac{\mu \epsilon}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

Solution:
$$\vec{E} = \vec{E}_o e^{i(kx - \omega t)}$$

where
$$\frac{\omega}{k} = \frac{1}{\sqrt{\epsilon\mu}} c = \frac{1}{n} c$$

In non-ferromagnetic media $\mu \approx 1$, and so $n \approx \sqrt{\epsilon}$. In dispersive media $n = n(\omega)$.

Alternatively, ϵ is measure of the attenuation of the field

Alternatively, ϵ is measure of the attenuation of the field

In vacuum:
$$f\lambda = \frac{\omega}{k} = c \implies \omega = c k$$

In medium:

$$v = \frac{c}{\sqrt{\epsilon(\omega)}} = \frac{c}{n} \qquad \Rightarrow \qquad \omega = \frac{c}{\sqrt{\epsilon}}k$$

Which charges participate?

Bound electrons

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$

Bound electrons

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$
$$F_{damping} = -m_e \gamma \frac{dx}{dt}$$

Bound electrons

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$

$$F_{damping} = -m_e \gamma \frac{dx}{dt}$$

$$F_{driving} = -eE = -eE_o e^{-i\omega t}$$

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$

$$F_{damping} = -m_e \gamma \frac{dx}{dt}$$

$$F_{driving} = -eE = -eE_o e^{-i\omega t}$$

Equation of motion

$$m\frac{d^2x}{dt^2} = \sum F$$

Electron on a string:

$$F_{binding} = -m_e \omega_o^2 x$$

$$F_{damping} = -m_e \gamma \frac{dx}{dt}$$

$$F_{driving} = -eE = -eE_o e^{-i\omega t}$$

Equation of motion

$$m\frac{d^2x}{dt^2} = \sum F$$

$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} + m\omega_o^2 x = -eE$$

Steady state: electron oscillates at driving frequency

$$x(t) = x_o e^{-i\omega t}$$
 $x_o = -\frac{e}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o$

Steady state: electron oscillates at driving frequency

$$x(t) = x_o e^{-i\omega t} \qquad x_o = -\frac{e}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o$$

Oscillating dipole

$$p(t) = -e x(t) = \frac{e^2}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o e^{-i\omega t}$$

Steady state: electron oscillates at driving frequency

$$x(t) = x_o e^{-i\omega t} \qquad x_o = -\frac{e}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o$$

Oscillating dipole

$$p(t) = -e x(t) = \frac{e^2}{m} \frac{1}{(\omega_o^2 - \omega^2) - i\gamma\omega} E_o e^{-i\omega t}$$

Polarization

$$P(t) = \left(\frac{Ne^2}{m}\right) \sum_{j} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega} E(t) \equiv \epsilon_o \chi_e E(t)$$
Dielectric function

$$\boldsymbol{\epsilon}(\boldsymbol{\omega}) \equiv 1 + \chi_e = 1 + \frac{Ne^2}{\boldsymbol{\epsilon}_o m} \sum_{j} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega}$$

Dielectric function

$$\boldsymbol{\epsilon}(\boldsymbol{\omega}) \equiv 1 + \chi_e = 1 + \frac{Ne^2}{\boldsymbol{\epsilon}_o m} \sum_{j} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega}$$

Bound electrons

amplitude of bound charge oscillation

Below resonance: bound charges keep up with driving field ⇒ field attenuated, wave propagates more slowly

At resonance: energy transfer from wave to bound charges \Rightarrow wave attenuates (absorption)

Above resonance: bound charges cannot keep up with driving field \Rightarrow dielectric like a vacuum

Dielectric function

$$\boldsymbol{\epsilon}(\boldsymbol{\omega}) \equiv 1 + \chi_e = 1 + \frac{Ne^2}{\boldsymbol{\epsilon}_o m} \sum_{j} \frac{f_j}{(\omega_j^2 - \omega^2) - i\gamma_j \omega}$$

Free electrons

No binding:

$$F_{binding} \approx 0$$

No binding:

$$F_{binding} \approx 0$$

Equation of motion:

$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} = -eE$$

No binding:

$$F_{binding} \approx 0$$

Equation of motion:

$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} = -eE$$

Solution: $x(t) = \frac{e}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t)$ (no resonance)

No binding:

$$F_{binding} \approx 0$$

Equation of motion:

$$m\frac{d^2x}{dt^2} + m\gamma\frac{dx}{dt} = -eE$$

Solution: $x(t) = \frac{e}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t)$ (no resonance)

Low frequency ($\omega \ll 1$) \Rightarrow current generated

$$J = -Ne \frac{dx}{dt} = \frac{Ne^2}{m} \frac{1}{\gamma - i\omega} E \approx \frac{Ne^2}{m\gamma} E \equiv \sigma E$$

$\omega \gg \gamma$: σ complex \Rightarrow *J* out of phase with *E*

 $\omega \gg \gamma$: σ complex \Rightarrow *J* out of phase with *E* Dipole:

$$p(t) = -e x(t) = -\frac{e^2}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t)$$

 $\omega \gg \gamma$: σ complex $\Rightarrow J$ out of phase with *E* Dipole:

$$p(t) = -e x(t) = -\frac{e^2}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t)$$

Polarization

$$P(t) = -\frac{Ne^2}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t) \equiv \epsilon_o \chi_e E(t)$$

 $\omega \gg \gamma$: σ complex $\Rightarrow J$ out of phase with *E* Dipole:

$$p(t) = -e x(t) = -\frac{e^2}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t)$$

Polarization

$$P(t) = -\frac{Ne^2}{m} \frac{1}{\omega^2 + i\gamma\omega} E(t) \equiv \epsilon_o \chi_e E(t)$$

Dielectric function

$$\epsilon(\omega) \equiv 1 + \chi_e = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2 + i\gamma\omega} = \epsilon'(\omega) + i\epsilon''(\omega)$$

Plasma

$$\boldsymbol{\gamma} \approx 0 \qquad \Rightarrow \quad \boldsymbol{\epsilon}'' = 0$$

$$\epsilon'(\omega) = 1 - \frac{Ne^2}{m\epsilon_o} \frac{1}{\omega^2} \equiv 1 - \frac{\omega_p^2}{\omega^2}$$

Plasma

Add damping $\gamma \leq \omega_p$

Plasma

Plasma acts like a high-pass filter:

Linear response

$$P(t) = \epsilon_o \chi_e E(t)$$

Linear response $P(t) = \epsilon_o \chi_e E(t)$

Linear response $P(t) = \epsilon_o \chi_e E(t)$

Linear response

$$P(t) = \epsilon_o \chi_e E(t)$$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

$$P = P^{(1)} + P^{(2)} + P^{(3)} + \dots$$

E = 0

Р

In medium with inversion symmetry

$$\vec{P}^{(2)} = \vec{\chi}^{(2)} : \vec{E} \vec{E} \implies - \vec{P}^{(2)} = \vec{\chi}^{(2)} : (-\vec{E})(-\vec{E})$$

In medium with inversion symmetry

$$\vec{P}^{(2)} = \vec{\chi}^{(2)} : \vec{E} \vec{E} \implies - \vec{P}^{(2)} = \vec{\chi}^{(2)} : (-\vec{E})(-\vec{E})$$

and so
$$\chi^{(2)} = -\chi^{(2)} = 0$$

In medium with inversion symmetry

$$\vec{P}^{(2)} = \vec{\chi}^{(2)} : \vec{E} \vec{E} \implies - \vec{P}^{(2)} = \vec{\chi}^{(2)} : (-\vec{E})(-\vec{E})$$

and so
$$\chi^{(2)} = -\chi^{(2)} = 0$$

... but ...

How to reconcile
$$\chi^{(2)} = -\chi^{(2)} = 0$$
 with ?

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(3)}E^3 + \dots$$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(3)}E^3 + \dots$$

Third order polarization

$$P^{(3)}(t) = \chi^{(3)}E(t)E^{*}(t)E(t) = \chi^{(3)}I(t)E(t)$$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(3)}E^3 + \dots$$

Third order polarization

$$P^{(3)}(t) = \chi^{(3)}E(t)E^{*}(t)E(t) = \chi^{(3)}I(t)E(t)$$

and so $P = P^{(1)} + P^{(3)} = (\chi^{(1)} + \chi^{(3)}I)E \equiv \chi_{eff}E$

Nonlinear polarization:

$$P = \chi^{(1)}E + \chi^{(3)}E^3 + \dots$$

Third order polarization

$$P^{(3)}(t) = \chi^{(3)}E(t)E^{*}(t)E(t) = \chi^{(3)}I(t)E(t)$$

and so $P = P^{(1)} + P^{(3)} = (\chi^{(1)} + \chi^{(3)}I)E \equiv \chi_{eff}E$

$$n = \sqrt{\epsilon} = \sqrt{1 + \chi_{eff}} \approx \sqrt{1 + \chi^{(1)}} + \frac{1}{2} \frac{\chi^{(3)}I}{\sqrt{1 + \chi^{(1)}}} = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

$$n = n_o + n_2 I$$

Phase:

$$\frac{\phi}{2\pi} = \frac{nL}{\lambda}$$

Phase:

$$\frac{\phi}{2\pi} = \frac{nL}{\lambda}$$

$$\phi = \frac{2\pi}{\lambda} L(n_o + n_2 I)$$

Phase:

$$\frac{\phi}{2\pi} = \frac{nL}{\lambda}$$

$$\phi = \frac{2\pi}{\lambda} L(n_o + n_2 I)$$

Frequency change:

$$\Delta \omega = -\frac{d\phi}{dt} = \frac{-2\pi}{\lambda} Ln_2 \frac{dI}{dt}$$

Phase:

$$\frac{\phi}{2\pi} = \frac{nL}{\lambda}$$

$$\phi = \frac{2\pi}{\lambda} L(n_o + n_2 I)$$

Frequency change:

$$\Delta \omega = -\frac{d\phi}{dt} = \frac{-2\pi}{\lambda} Ln_2 \frac{dI}{dt}$$

Spatial intensity profile...

Spatial intensity profile...

...causes self-focusing

femtosecond measurements

nd nonlinea

Jale

> examples

nee

How to measure on the femtosecond time scale?

Use pump-probe technique

Use pump-probe technique

Use pump-probe technique

Vary delay to get time resolution

Dispersion stretches the pulse

Compensate by rearranging spectral components!

How do these arrangements work?

Does path length difference compensate?

Does path length difference compensate?

Does path length difference compensate?

Grating gives low frequency longer path length...

Does path length difference compensate?

...so prism gives low frequency shorter path length...

So not path length but
$$\frac{d^2\phi}{d\omega^2}$$
 matters!

	$rac{dl_{eff}}{d\omega}$	$rac{d^2\phi}{d\omega^2}$
dispersion	+	+
gratings	-	-
prisms	+	_

Representation of pulses

Spectrum of sinusoidal intensity is a delta function

$$I(t) = \cos^2(\omega_o t) \implies P(\omega) = \delta(\omega - \omega_o)$$

Representation of pulses

Modulate amplitude

$$I(t) = \exp\left[-\frac{t^2}{\sigma_t^2}\right] \cos^2(\omega_o t)$$

$$E(t) = \exp\left[-\frac{t^2}{2\sigma_t^2} - i\omega_o t\right]$$

$$E(t) = \exp\left[-\frac{t^2}{2\sigma_t^2} - i\omega_o t\right]$$

$$E(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left[-\frac{t^2}{2\sigma_t^2} + i(\omega - \omega_o)t\right] dt =$$

$$E(t) = \exp\left[-\frac{t^2}{2\sigma_t^2} - i\omega_o t\right]$$

$$E(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left[-\frac{t^2}{2\sigma_t^2} + i(\omega - \omega_o)t\right] dt =$$

$$=\frac{1}{\sqrt{2\pi}}\exp\left[-\frac{\sigma_t^2(\omega-\omega_o)^2}{2}\right]\int_{-\infty}^{\infty}\exp\left[\frac{t}{\sqrt{2}\sigma_t}-i\frac{(\omega-\omega_o)\sigma_t}{\sqrt{2}}\right]^2dt=$$

$$E(t) = \exp\left[-\frac{t^2}{2\sigma_t^2} - i\omega_o t\right]$$

$$E(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left[-\frac{t^2}{2\sigma_t^2} + i(\omega - \omega_o)t\right] dt =$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{\sigma_t^2(\omega - \omega_o)^2}{2}\right] \int_{-\infty}^{\infty} \exp\left[\frac{t}{\sqrt{2\sigma_t}} - i\frac{(\omega - \omega_o)\sigma_t}{\sqrt{2}}\right]^2 dt =$$

$$= \sigma_t \exp\left[-\frac{\sigma_t^2(\omega - \omega_o)^2}{2}\right] \equiv \sigma_t \exp\left[-\frac{(\omega - \omega_o)^2}{2\sigma_\omega^2}\right]$$

Representation of pulses

Pulse duration-bandwidth product: $\sigma_t \sigma_\omega = 1$

$$I(t) = [\operatorname{Re} E(t)]^2 \propto \exp\left[-\frac{t^2}{\sigma_t^2}\right] \cos^2(\omega_o t)$$

$$P(\omega) = E(\omega)E^*(\omega) = \exp\left[-\frac{(\omega-\omega_o)^2}{\sigma_{\omega}^2}\right]$$

Representation of pulses

Pulse duration-bandwidth product: $\sigma_t \sigma_{\omega} = 1$

$$I(t) = [\operatorname{Re} E(t)]^2 \propto \exp\left[-\frac{t^2}{\sigma_t^2}\right] \cos^2(\omega_o t)$$

$$P(\omega) = E(\omega)E^*(\omega) = \exp\left[-\frac{(\omega - \omega_o)^2}{\sigma_{\omega}^2}\right]$$

Wigner representation:

$$W(t,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E\left(\omega + \frac{\omega'}{2}\right) E^*\left(\omega - \frac{\omega'}{2}\right) e^{-i\omega't} d\omega' =$$

$$= \int_{-\infty}^{\infty} E\left(t + \frac{t'}{2}\right) E^*\left(t - \frac{t'}{2}\right) e^{-i\omega t'} dt'$$

Wigner representation:

$$W(t,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E\left(\omega + \frac{\omega'}{2}\right) E^*\left(\omega - \frac{\omega'}{2}\right) e^{-i\omega't} d\omega' =$$

$$= \int_{-\infty}^{\infty} E\left(t + \frac{t'}{2}\right) E^*\left(t - \frac{t'}{2}\right) e^{-i\omega t'} dt'$$

$$\frac{1}{2\pi}\int_{-\infty}^{\infty} W(t,\omega) \ d\omega = |E(t)|^2 = I(t)$$

Wigner representation:

$$W(t,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E\left(\omega + \frac{\omega'}{2}\right) E^*\left(\omega - \frac{\omega'}{2}\right) e^{-i\omega't} d\omega' =$$

$$= \int_{-\infty}^{\infty} E\left(t + \frac{t'}{2}\right) E^*\left(t - \frac{t'}{2}\right) e^{-i\omega t'} dt'$$

$$\frac{1}{2\pi}\int_{-\infty}^{\infty} W(t,\omega) \ d\omega = |E(t)|^2 = I(t)$$

$$\int_{-\infty}^{\infty} W(t,\omega) dt = |E(\omega)|^2 = I(\omega)$$

Joint time-frequency representation

Energy:

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}W(t,\omega)\ dt\ d\omega$$

Joint time-frequency representation

Energy:

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}W(t,\omega)\ dt\ d\omega$$

 $W(t,\omega)$ must be nonzero in phase-space area larger than π

Joint time-frequency representation

Energy:

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}W(t,\omega)\ dt\ d\omega$$

 $W(t,\omega)$ must be nonzero in phase-space area larger than π

Use pulse to measure itself...

Use pulse to measure itself...

Use pulse to measure itself...

Electric field at SHG crystal

$$E_{tot}(t,\tau) = \frac{1}{\sqrt{2}}E_1(t) + \frac{1}{\sqrt{2}}E_2(t+\tau)$$

Electric field at SHG crystal

$$E_{tot}(t,\tau) = \frac{1}{\sqrt{2}}E_1(t) + \frac{1}{\sqrt{2}}E_2(t+\tau)$$

Second harmonic field

$$E_{2\omega} \propto \chi^{(2)} E_{tot}^2$$

Electric field at SHG crystal

$$E_{tot}(t,\tau) = \frac{1}{\sqrt{2}}E_1(t) + \frac{1}{\sqrt{2}}E_2(t+\tau)$$

Second harmonic field

$$E_{2\omega} \propto \chi^{(2)} E_{tot}^2$$

Second harmonic intensity

 $I_{2\omega}(t,\tau) \propto |\chi^{(2)}|^2 |E_{tot}^2|^2 = |\chi^{(2)}|^2 |E_1^2(t) + 2E_1(t)E_2(t+\tau) + E_2^2(t+\tau)|^2$

Second harmonic intensity

 $I_{2\omega}(t,\tau) \propto |\chi^{(2)}|^2 |E_{tot}^2|^2 = |\chi^{(2)}|^2 |E_1^2(t) + 2E_1(t)E_2(t+\tau) + E_2^2(t+\tau)|^2$

detector selects middle term

Integrated detector signal yields intensity autocorrelation

$$A(\tau) = \int I_{2\omega}(t,\tau) dt \propto \int |\chi^{(2)}|^2 4 |E_1(t)|^2 |E_2(t+\tau)|^2 dt$$

Integrated detector signal yields intensity autocorrelation

$$A(\tau) = \int I_{2\omega}(t,\tau) dt \propto \int |\chi^{(2)}|^2 4 |E_1(t)|^2 |E_2(t+\tau)|^2 dt$$
$$A(\tau) \propto \int I_1(t) I_2(t+\tau) dt$$
Integrated detector signal yields intensity autocorrelation

$$A(\tau) = \int I_{2\omega}(t,\tau) dt \propto \int |\chi^{(2)}|^2 4 |E_1(t)|^2 |E_2(t+\tau)|^2 dt$$
$$A(\tau) \propto \int I_1(t) I_2(t+\tau) dt$$

Integrated detector signal yields intensity autocorrelation

$$A(\tau) = \int I_{2\omega}(t,\tau) dt \propto \int |\chi^{(2)}|^2 4 |E_1(t)|^2 |E_2(t+\tau)|^2 dt$$
$$A(\tau) \propto \int I_1(t) I_2(t+\tau) dt$$

Alternative colinear geometry

 $I_{2\omega}(t,\tau) \propto |\chi^{(2)}|^2 |E_{tot}^2|^2 = |\chi^{(2)}|^2 |E_1^2(t) + 2E_1(t)E_2(t+\tau) + E_2^2(t+\tau)|^2$

at $\tau = 0$: $I_{2\omega}(t,\tau) \propto 16E^4(t)$

 $I_{2\omega}(t,\tau) \propto |\chi^{(2)}|^2 |E_{tot}^2|^2 = |\chi^{(2)}|^2 |E_1^2(t) + 2E_1(t)E_2(t+\tau) + E_2^2(t+\tau)|^2$

at
$$\tau = 0$$
: $I_{2\omega}(t,\tau) \propto 16E^4(t)$

as $\tau \to \pm \infty$:

$$I_{2\omega}(t,\tau) \propto 2E^4(t)$$

 $I_{2\omega}(t,\tau) \propto |\chi^{(2)}|^2 |E_{tot}^2|^2 = |\chi^{(2)}|^2 |E_1^2(t) + 2E_1(t)E_2(t+\tau) + E_2^2(t+\tau)|^2$

at
$$\tau = 0$$
: $I_{2\omega}(t,\tau) \propto 16E^4(t)$

as $\tau \to \pm \infty$:

$$I_{2\omega}(t,\tau) \propto 2E^4(t)$$

Do we really need the second-harmonic crystal...?

Would this work?

Intensity at detector

$$I_{\omega}(t,\tau) \propto |E_1(t) + E_2(t+\tau)|^2$$

Intensity at detector

$$I_{\omega}(t,\tau) \propto |E_1(t) + E_2(t+\tau)|^2$$

Detected signal

$$S_{\omega}(\tau) = \int I_{\omega}(t,\tau) dt$$

Intensity at detector

$$I_{\omega}(t,\tau) \propto |E_1(t) + E_2(t+\tau)|^2$$

Detected signal

$$S_{\omega}(\tau) = \int I_{\omega}(t,\tau) dt$$

SO

$$S_{\omega}(\tau) \propto \int \{ |E_1(t)|^2 + |E_2(t+\tau)|^2 + E_1(t)E_2^*(t+\tau) + E_1^*(t)E_2(t+\tau) \} dt$$

But what about dispersion?

Let
$$E_{disp}(\omega) = E_{orig}(\omega)e^{-i\phi(\omega)}$$
.

Let $E_{disp}(\omega) = E_{orig}(\omega)e^{-i\phi(\omega)}$. Convolution theorem $f_1(t) \otimes f_2(t) \equiv \int f_1(t+\tau)f_2^*(t) dt = \mathcal{F}^{-1}\{f_1(\omega)f_2^*(\omega)\}$

Let
$$E_{disp}(\omega) = E_{orig}(\omega)e^{-i\phi(\omega)}$$
. Convolution theorem
 $f_1(t) \otimes f_2(t) \equiv \int f_1(t+\tau)f_2^*(t) dt = \mathcal{F}^{-1}\{f_1(\omega)f_2^*(\omega)\}$

Interference term in linear autocorrelation:

$$\int E_{disp}(t+\tau)E_{disp}^{*}(t) dt = \mathcal{F}^{-1}\{E_{disp}(\omega)E_{disp}^{*}(\omega)\} =$$

Let
$$E_{disp}(\omega) = E_{orig}(\omega)e^{-i\phi(\omega)}$$
. Convolution theorem
 $f_1(t) \otimes f_2(t) \equiv \int f_1(t+\tau)f_2^*(t) dt = \mathcal{F}^{-1}\{f_1(\omega)f_2^*(\omega)\}$

Interference term in linear autocorrelation:

$$\int E_{disp}(t+\tau)E_{disp}^{*}(t) dt = \mathcal{F}^{-1}\{E_{disp}(\omega)E_{disp}^{*}(\omega)\} =$$

$$= \mathscr{F}^{-1} \{ E_{orig}(\omega) e^{i\phi(\omega)} E_{orig}^{*}(\omega) e^{-i\phi(\omega)} \} =$$

Let
$$E_{disp}(\omega) = E_{orig}(\omega)e^{-i\phi(\omega)}$$
. Convolution theorem
 $f_1(t) \otimes f_2(t) \equiv \int f_1(t+\tau)f_2^*(t) dt = \mathcal{F}^{-1}\{f_1(\omega)f_2^*(\omega)\}$

Interference term in linear autocorrelation:

$$\int E_{disp}(t+\tau)E_{disp}^{*}(t) dt = \mathcal{F}^{-1}\{E_{disp}(\omega)E_{disp}^{*}(\omega)\} =$$

$$= \mathscr{F}^{-1} \{ E_{orig}(\omega) e^{i\phi(\omega)} E_{orig}^{*}(\omega) e^{-i\phi(\omega)} \} =$$

$$= \mathscr{F}^{-1}\{E_{orig}(\omega)E_{orig}^{*}(\omega)\} = \int E_{orig}(t+\tau) E_{orig}^{*}(t) dt$$

IRG ("instantaneous response gate"): device whose transmittance of a weak probe pulse is proportional to the intensity envelope of the pump ("gate")

T(t) = u(t)

Transmitted intensity

$$I(t) = I_o T(t) = I_o u(t) = I_o \exp\left[-\frac{t^2}{\sigma_t^2}\right]$$

Transmitted intensity

$$I(t) = I_o T(t) = I_o u(t) = I_o \exp\left[-\frac{t^2}{\sigma_t^2}\right]$$
$$\sigma_t \sigma_\omega = 1$$

Transmitted intensity

$$I(t,\tau) = u(t)r(t+\tau) = \exp\left[-\frac{t^2}{\sigma^2}\right] \exp\left[-\left(\frac{t+\tau}{\sigma}\right)^2\right] =$$
$$= \exp\left[-\frac{2t^2 + 2t\tau + \tau^2}{\sigma^2}\right] = \exp\left[-\frac{2t^2 + 2t\tau + \tau^2/2}{\sigma^2}\right] \exp\left[-\frac{\tau^2}{2\sigma^2}\right] =$$

Transmitted intensity

$$I(t,\tau) = \exp\left[-\frac{\tau^2}{2\sigma^2}\right] \exp\left[-\left(\frac{t+\tau/2}{\sigma/\sqrt{2}}\right)^2\right]$$

so $I(t,\tau)$ narrowed by $\sqrt{2}$

$$S(\tau) = \int_{-\infty}^{\infty} I(t,\tau) dt = \int_{-\infty}^{\infty} \exp\left[-\frac{\tau^2}{2\sigma^2}\right] \exp\left[-2\left(\frac{t+\tau/2}{\sigma^2}\right)^2\right] dt$$

$$S(\tau) = \int_{-\infty}^{\infty} I(t,\tau) dt = \int_{-\infty}^{\infty} \exp\left[-\frac{\tau^2}{2\sigma^2}\right] \exp\left[-2\left(\frac{t+\tau/2}{\sigma^2}\right)^2\right] dt$$

$$S(\tau) = \int_{-\infty}^{\infty} I(t,\tau) dt = \int_{-\infty}^{\infty} \exp\left[-\frac{\tau^2}{2\sigma^2}\right] \exp\left[-2\left(\frac{t+\tau/2}{\sigma^2}\right)^2\right] dt$$

$$S(\tau) = \int_{-\infty}^{\infty} I(t,\tau) dt = \int_{-\infty}^{\infty} \exp\left[-\frac{\tau^2}{2\sigma^2}\right] \exp\left[-2\left(\frac{t+\tau/2}{\sigma^2}\right)^2\right] dt$$
$$= \exp\left[-\frac{\tau^2}{2\sigma^2}\right] \int_{-\infty}^{\infty} \exp\left[-\frac{2u^2}{\sigma^2}\right] du = \sqrt{\frac{\pi}{2}} \sigma \exp\left[-\frac{\tau^2}{(\sigma\sqrt{2})^2}\right]$$

$$S(\tau) = \int_{-\infty}^{\infty} I(t,\tau) dt = \int_{-\infty}^{\infty} \exp\left[-\frac{\tau^2}{2\sigma^2}\right] \exp\left[-2\left(\frac{t+\tau/2}{\sigma^2}\right)^2\right] dt$$
$$= \exp\left[-\frac{\tau^2}{2\sigma^2}\right] \int_{-\infty}^{\infty} \exp\left[-\frac{2u^2}{\sigma^2}\right] du = \sqrt{\frac{\pi}{2}} \sigma \exp\left[-\frac{\tau^2}{(\sigma\sqrt{2})^2}\right]$$

If gate and probe unequal:

$$\sigma_{prod}^{2} = \frac{\sigma_{1}^{2}\sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}$$
 (narrower than both)
$$\sigma_{cc}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2}$$
 (wider than both)

Transmitted field:

$$E_{trans}(t,\tau) \propto \chi^{(3)} E_{probe}(t) |E_{gate}(t+\tau)|^2$$

R. Trebino, et al., Rev. Sci. Instrum. 68, 3277 (1997)

What are the resolution limits?

linear and nonlinear propagation femtosecond measurements examples

short laser pulses can drive structural transitions

how do femtosecond laser pulses alter a solid?

photons excite valence electrons...

... and create free electrons...

... causing electronic and structural changes...

... which we detect with a second laser pulse

structure

Fresnel equations cannot be inverted analytically

need numerical inversion

$R_1 = 45^{\circ} p$ -pol, $R_2 = 45^{\circ} s$ -pol

 $R_1 = 60^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

 $R_1 = 78^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

 $R_1 = 78^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

 $R_1 = 78^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

 $R_1 = 78^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

 $R_1 = 78^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

 $R_1 = 78^{\circ} p$ -pol, $R_2 = 45^{\circ} p$ -pol

Phys. Rev. Lett. 80, 185 (1998)

- direct observation of semiconductorto-metal transition
- order-disorder transition
- transition structural, not electronic

high intensity at focus...

... causes nonlinear ionization...

and 'microexplosion' causes microscopic damage

2 x 2 µm array

fused silica, 0.65 NA

0.5 µJ, 100 fs, 800 nm

100 fs 0.5 μJ

200 ps 9 μJ

5 x 5 µm array

fused silica, 0.65 NA

0.5 µJ, 100 fs, 800 nm

Opt. Lett. 21, 2023 (1996)

amplified laser

heat-diffusion time: $\tau_{diff} \approx 1 \ \mu s$

long-cavity Ti:sapphire oscillator

heat-diffusion time: $\tau_{diff} \approx 1 \ \mu s$

waveguide machining

waveguide machining

waveguide mode analysis

3D wave splitter

Bragg grating

Bragg grating

monolithic amplifier

Summary

manipulating the machinery of life

Summary

Femtosecond laser pulses offer:

- Unprecedented view into dynamics
- Extreme conditions with little energy
- New opportunities for research and processing

Funding: NSF, ARO, DOE

Acknowledgments: Prof. N. Bloembergen Prof. H. Ehrenreich Prof. T. Kaxiras

For a copy of this talk and additional information, see:

http://mazur-www.harvard.edu