Femtosecond-laser Microstructuring of Silicon for Novel Optoelectronic Devices

James Carey Photonics West San Jose, CA, 25 January 2005

Motivation

Silicon:

- most widely used semiconductor
- enormous infrastructure, inexpensive
- can't do everything
- alter silicon to improve functionality

apparatus

apparatus

- maskless etching process
- self-organized, conical microstructures
- highly light absorbing

Outline

- optical properties
- structural and chemical analysis
- photodetectors
 - the p-n junction
 - femtosecond-laser microstructured silicon photodiodes
- outlook

Outline

- optical properties
- structural and chemical analysis

1/24/03

- photodetectors
 - the p-n junction
 - femtosecond-laser microstructured silicon photodiodes
 - outlook

reflectance (integrating sphere)

reflectance (integrating sphere)

transmittance (integrating sphere)

transmittance (integrating sphere)

absorptance (1 - R - T)

absorptance (1 - R - T)

What causes the near-unity absorptance?

multiple reflections enhance absorption

multiple reflections enhance absorption

electronic band structure changes

- enhanced absorption in visible
- near-unity absorption in infrared
- modified electronic band structure

Outline

- optical properties
- structural and chemical analysis

1/24/03

- photodetectors
 - the p-n junction
 - femtosecond-laser microstructured silicon photodiodes
 - outlook

Band structure changes: defects and/or impurities.

cross-sectional Transmission Electron Microscopy

M. Wall, F. Génin (LLNL)

crystalline silicon core

- 300 nm disordered surface layer
- undisturbed crystalline below
- surface layer: polycrystalline Si with 1.6% sulfur

Microstructure with different ambient gases:

- gas species incorporated into surface
- sulfur critical for below-band gap absorption

Outline

- optical properties
- structural and chemical analysis

1/24/03

- photodetectors
 - the *p-n* junction
 - femtosecond-laser microstructured silicon photodiodes
 - outlook

join acceptor and donor type Si...

join acceptor and donor type Si...

electrons and holes diffuse across junction...

...and get 'trapped' after they combine

build-up of charge leads to electric field that stops diffusion

non-conducting layer at junction

apply electric field...

...holes pushed left, electrons to right...

and so depletion zone expands

NO conduction

reverse electric field...

...depletion zone shrinks and current flows

so pn-junction like one-way valve for charge flow: a diode

depletion layer can convert light into electric energy

incident photon knocks out electron...

...creating an electron-hole pair

E-field separates eh-pair, causing current

Outline

- optical properties
- structural and chemical analysis

1/24/0.

- photodetectors
 - the p-n junction
 - femtosecond-laser microstructured silicon photodiodes
 - outlook

create photodiode using black silicon/silicon junction

lm

crystalline Si

irradiate with 100-fs laser pulses in SF₆

Cr/Au contact

cross section

Cr/Au contact

black silicon/silicon junction

IV characteristics

IV characteristics

We have a diode. What about a photodiode?

responsivity

responsivity

responsivity

black silicon/silicon photodiode

- nearly 100x larger signal in visible
- 10⁴ larger signal in near-IR
- quantum efficiency >> 1, gain!

Outlook

Appl. Phys. Lett., 82, 1715 (2003)

Outlook

- photodetectors
- microstructured surfaces
 - many types of micro- and nanostructures
 - strong field emission
 - visible photoluminescence

Appl. Phys. Lett., 85, 5694 (2004)

Outlook

Summary

Summary

- self-organized, conical microstructures
- near-unity absorption from near-UV to near-IR
- high sensitivity VIS/NIR silicon-based photodiodes
- maskless process, easily integrated with microelectronics
- just the beginning: many promising applications

Acknowledgements

Eric Diebold Michael Sheehy Brian Tull Jeffrey Warrander Claudia Wu Rebecca Younkin

Dr. John Chervinsky Dr. Joshua Levinson Dr. François Génin (LLNL) Dr. Richard Farrell Dr. Arieh Karger (RMD) Dr. Richard Meyers (RMD)

Prof. Michael Aziz Prof. Catherine Crouch Prof. Cynthia Friend Prof. Mengyan Shen Prof. Li Zhao (Fudan)

Funding: Army Research Office, DARPA, Department of Energy, and NDSEG

http://mazur-www.harvard.edu/

response time: 10 ns rise, 30 ns fall

effect of annealing

effect of annealing

responsivity (white light)

Structural analysis

before annealing

after annealing

Structural analysis

annealed

annealing does not affect visible structure

Nanosecond vs femtosecond

800 nm, 100 fs, 10 kJ/m²

248 nm, 30 ns, 30 kJ/m²

Nanosecond vs femtosecond

800 nm, 100 fs, 10 kJ/m²

fs cones etched below surface

248 nm, 30 ns, 30 kJ/m²

ns cones grow above surface

ripples

laser polarization

SF₆

- 1. Interference ripples $(\perp \text{ to polarization})$
- 2. Coarsened ridges (⊥ to ripples)
- 3. Beads sharpening into spikes

$$N = 2$$

N = 4

N = 10

Two distinct wavelengths: ripples and spikes

feature intensities

SF₆ ripples

parallel

perpendicular

feature intensities

SF₆ spikes

parallel

perpendicular
Formation process

- spike wavelength appears as ripple wavelength disappears
- spike wavelength appears first perpendicular to polarization

N = 10

What sets the length scales?

- ripples: laser wavelength
- ridges and spikes: perhaps capillary waves

Capillary wavelength set by melt depth, duration

$$\lambda = \left[\frac{\sigma d}{\rho}\right]^{\frac{1}{4}} (2\pi\tau)^{\frac{1}{2}}$$

- longest wavelength similar to spike spacing (10 µm)
- both spike spacing and capillary wavelength increase with laser fluence

Structural and chemical analysis

microstructured in different gases

doping

ion implanted/laser annealed

annealing

fluence

