Sub-cellular nanosurgery in live cells using ultrashort laser pulses

Iva Maxwell Harvard University

ECBO/CLEO Munich, Germany, 13 June 2005

Iva Maxwell

Alexander Heisterkamp

Sanjay Kumar

Donald Ingber

Eric Mazur

femtosecond lasers for sub-cellular manipulation

high penetration depth in tissues

femtosecond lasers for sub-cellular manipulation

- high penetration depth in tissues
- nonlinear interaction

femtosecond lasers for sub-cellular manipulation

- high penetration depth in tissues
- nonlinear interaction
- no damage outside focal region

femtosecond lasers for sub-cellular manipulation

- high penetration depth in tissues
- nonlinear interaction
- no damage outside focal region
- easily integrated with high resolution microscopy

outline

material ablation in cells

nanosurgery in live cells

stress fiber dynamics

setup

fluorescent actin network in a fixed cell

actin network after laser irradiation

q: material ablation or photobleaching?

q: material ablation or photobleaching?

a: use electron microscopy to verify material ablation

fluorescence image of a stained nucleus

fluorescence image after laser irradiation

TEM image of the same nucleus

1.45 nJ shows photobleaching no ablation

define three regions of interaction

• TEM • fluorescence

definitive proof of sub-cellular material ablation

ablation widths as small as 250 nm

ablation threshold varies slightly

ablation threshold is 1.2 times that of photobleaching

outline

material ablation in cells

nanosurgery in live cells

stress fiber dynamics

GFP-labeled microtubules in live endothelial cells

cutting microtubules in live cells

cutting microtubules in live cells

outline

material ablation in cells

nanosurgery in live cells

stress fiber dynamics

YFP fluorescent actin filaments in a live cell

10 seconds later

cell mechanics

- cells are thought to be tensegrity structures
- tensegrity is balance of tension and compression
- actin bundles bear tension

fiber retraction vs. time after laser ablation

viscoelastic model of an actin fiber bundle

$$\Delta L = L_{\infty} \left(1 - e^{-t/\tau}\right) + L_0$$

modeling of tension release

2 cuts along the same fiber

release of tension release

release of tension release

fs laser sub-cellular ablation is:

verified by TEM

used for live cell nanosurgery

a tool to study stress fiber mechanics

Jean Underwood, Jeffrey Nickerson Umass Medical School

Harvard MRSEC National Science Foundation National Institutes of Health

OSA Travel Grant Harvard Graduate Student Council

for a copy of this presentation:

http://mazur-www.harvard.edu

effect of myosin motor inhibition on stress fibers tension

effect of myosin motor inhibition on stress fibers tension

