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Institut für Laser- und Plasmaphysik, Universität Essen, D-45117 Essen, Germany

Received March 6, 1995; revised manuscript received June 15, 1995

Combining femtosecond pump–probe techniques with optical microscopy, we have studied laser-induced

optical breakdown in optically transparent solids with high temporal and spatial resolution. The threshold of

plasma formation has been determined from measurements of the changes of the optical reflectivity associated

with the developing plasma. It is shown that plasma generation occurs at the surface. We have observed

a remarkable resistance to optical breakdown and material damage in the interaction of femtosecond laser

pulses with bulk optical materials.  1996 Optical Society of America

1. INTRODUCTION

The interaction of intense femtosecond laser pulses with

solids offers the possibility of producing a new class of

plasmas having approximately solid-state density and

spatial density scale lengths much smaller than the wave-

length of light. These high-density plasmas with ex-

tremely sharp density gradients are currently of great

interest, particularly from the point of view of generat-

ing bright, ultrashort x-ray pulses. To produce such a

plasma, the laser pulse should rise from the intensity level

corresponding to the threshold of plasma formation to the

peak value in a time much shorter than the time scale

of plasma expansion. Thus the specification of the tol-

erable intensity background or of the acceptable amount

of prepulse of the laser pulse requires some knowledge of

threshold of plasma formation of the target material.

The transformation of solid material into a dense

plasma is also interesting from a fundamental physics

point of view. Electric breakdown of dielectrics, that is,

rapid ionization and formation of a plasma when the ma-

terial is exposed to electric fields exceeding some critical

value, is a rather general phenomenon. It has been in-

vestigated for a wide variety of different situations rang-

ing from static fields1 to very-high-frequency laser fields.2

In the mid-seventies Bloembergen and co-workers studied

laser-induced breakdown of alkali halides and some other

dielectric materials by using nanosecond and picosecond

laser pulses.3 They came to the conclusion that the phys-

ical mechanism responsible for the intrinsic optical bulk

breakdown of these materials is avalanche ionization, the

same as for static-electrical breakdown.

The variation of the breakdown threshold as a func-

tion of laser pulse duration has also been studied,4 and

the observations were found to be in agreement with

the avalanche ionization model. A breakdown threshold

field of 107 Vcm was measured for the shortest pulses

in these experiments, which were 10 ps in duration.

A simple extrapolation to the femtosecond regime would

predict breakdown fields in excess of 108 Vcm, which is

the order of magnitude at which tunneling ionization is

important, as already pointed out by Bloembergen.3

One of the key points in the research of Bloembergen

and his co-workers was the use of very tightly focused

laser beams, which allowed them to reach the breakdown

threshold of the materials while staying well below the

critical power of self-focusing. Self-focusing is one of the

major problems in the measurement of bulk breakdown

thresholds. In a more recent review Soileau et al.5 care-

fully examined the role of self-focusing in experiments

measuring laser-induced breakdown of bulk dielectric ma-

terials. They concluded that the breakdown and dam-

age thresholds are also strongly influenced by extrinsic

effects.

Thus far, the issue of breakdown thresholds in fem-

tosecond laser–solid interaction has barely been touched.

Very recently, Du et al.6 carried out laser-induced break-

down experiments on fused silica with pulses ranging in

duration from 7 ns to as low as 150 fs. They reported

an interesting dependence of the fluence threshold on

pulse duration, particularly a pronounced increase of the

threshold with decreasing pulse duration below 10 ps.

These observations were interpreted in terms of the bulk

avalanche ionization model. In related research, Stuart

et al.7 studied the pulse-width dependence of the thresh-

old of surface damage for a wide range of materials and

pulse durations. They observed only some weak varia-

tion of the damage threshold below 10 ps.

At the present time, laser-induced breakdown in the

femtosecond time regime and the accompanying material

damage processes are far from well understood. The key

issues that have to be addressed are the roles of the var-

ious possible ionization mechanisms, such as avalanche,

multiphoton, and tunneling processes, and the clarifica-

tion of surface and bulk breakdown processes. For bulk

breakdown processes the influence of self-focusing and/or

self-defocusing is likely to present an even more difficult

problem for ultrashort, femtosecond laser pulses than in

the previous research with longer pulses.

In this paper we describe measurements of the thresh-

old of plasma formation that were made when an in-

tense 120-fs laser pulse was focused on the surface of

optically transparent materials. An active pump–probe

technique, described in Section 2, was used to monitor the
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“… clear evidence that no bulk plasmas…

[and] … no bulk damage could be produced

with femtosecond laser pulses”

Introduction

von der Linde, et al., J. Opt. Soc. Am. B 13, 216 (1996)
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focus laser beam inside material

Opt. Lett. 21, 2023 (1996)
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photon energy < bandgap             nonlinear interaction
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nonlinear interaction provides bulk confinement
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nonlinear interaction provides bulk confinement
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Femtosecond micromachining

 

Some applications: 

• data storage

• waveguides

• microfluidics
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• applications



Femtosecond micromachining

Dark-field scattering

sample
objective



Femtosecond micromachining

block probe beam…

sample

detector

objective
probe
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… bring in pump beam…

sample

detector

objective

pump

probe
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… damage scatters probe beam

sample

detector

objective

pump

probe
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Femtosecond micromachining

vary numerical aperture
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vary numerical aperture
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fit gives threshold intensity: Ith = 2.5 x 1017 W/m2
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vary material…
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…threshold varies with band gap (but not much!)
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would expect much more than a factor of 2
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critical density reached by multiphoton for low gap only
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avalanche ionization important at high gap
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Femtosecond micromachining

what prevents damage at low NA?



Femtosecond micromachining

Competing nonlinear effects:

• multiphoton absorption

• supercontinuum generation

• self-focusing
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why the difference?

low NAhigh NA



Femtosecond micromachining

very different confocal length/interaction length

low NAhigh NA
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high NA: interaction length too short for self-focusing
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Femtosecond micromachining

Points to keep in mind:

• threshold critically dependent on NA

• surprisingly little material dependence

• avalanche ionization important
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• applications
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less than 10 nJ at high numerical aperture!
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Low-energy machining

amplified laser: 1 kHz, 1 mJ

100 fs
1 ms

heat diffusion time:   tdiff ≈ 1 µs



Low-energy machining

long cavity oscillator: 25 MHz, 25 nJ

30 fs
40 ns

heat diffusion time:   tdiff ≈ 1 µs



Low-energy machining

50 µm



Low-energy machining

High repetition-rate micromachining:

• structural changes exceed focal volume

• spherical structures

• density change caused by melting
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40 ns1 ms

amplified laser oscillator

repetitive cumulative



Low-energy machining

amplified laser oscillator

repetitive cumulative
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the longer the irradiation…
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the longer the irradiation…
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the longer the irradiation…

… the larger the radius
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50 µm
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Low-energy machining

at high-rep rate: internal “point-source of heat”
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repetition-rate control
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repetition-rate dependence of diameter
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5-pulse burst: diameter grows above 1 MHz
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5-pulse burst: diameter grows above 1 MHz
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add data for 3 and 10-pulse bursts
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calculate heat accumulation between bursts
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transition occurs for 150 K residual temperature rise 
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Low-energy machining

waveguide micromachining

Opt. Lett. 26, 93 (2001)



Low-energy machining

waveguide micromachining

Opt. Lett. 26, 93 (2001)
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curved waveguides
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curved waveguides

 



Applications

photonic fabrication techniques

 fs micromachining other

loss (dB/cm) < 3 0.1–3

bending radius 36 mm 30–40 mm

Dn 2 x 10–3 10–4 – 0.5

3D integration Y N
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photonic devices

3D splitter

Bragg grating

demultiplexer

amplifier

interferometer
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all-optical sensor

 

substrate

Appl. Phys. Lett. 87, 051106 (2005)
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all-optical sensor

 

substratesuspended beam

Appl. Phys. Lett. 87, 051106 (2005)
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all-optical sensor
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all-optical sensor
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all-optical sensor
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all-optical sensor
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all-optical sensor
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sensor gap

 

20 µm

Appl. Phys. Lett. 87, 051106 (2005)
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calibration
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sensor response to 100 Hz acoustic wave
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Applications

ideal tool for ablating (living) tissue

 



Applications

• standard biochemical tools: species selective

• fs laser “nanosurgery”: site specific

 



Applications

Q: can we probe the dynamics of the cytoskeleton?



Applications

actin fiber network of a live cell

10 µm



Applications

cut a single fiber bundle

10 µm
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cut a single fiber bundle

10 µm



Applications

gap widens with time

t = 10 s10 µm



Applications

dynamics provides information on in vivo mechanics

10 µm



Applications

Q: can we probe the neurological origins of behavior?



Applications

Juergen Berger & Ralph Sommer
Max-Planck Institute for Developmental Biology

Caenorhabditis Elegans



Applications

Caenorhabditis Elegans

• simple model organism

• similarities to higher organisms

• genome fully sequenced

• easy to handle



Applications

Caenorhabditis Elegans

• 80 µm x 1 mm

• about 1300 cells

• 302 neurons

• invariant wiring diagram

• neuronal system completely encodes behavior



Applications
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Applications

cut single dendrite in amphid bundle

5 µm



Applications

cut single dendrite in amphid bundle

5 µm



Applications

cut single dendrite in amphid bundle

5 µm



Applications

surgery results in quantifiable behavior changes

before after



Summary
 

great tool for

• “wiring light”

• micromanipulating the machinery of life



Summary
 

 
• important parameters: focusing, energy, repetition rate

• nearly material independent

• two regimes: low and high repetition rate

• high-repetition rate (thermal) machining fast, convenient
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