Femtosecond laser-nanostructured substrates for surface enhanced Raman scattering (SERS)

Eric Diebold and Eric Mazur

Division of Engineering and Applied Sciences, Harvard University

Motivation

Raman spectroscopy has applications in:

- Pharmaceuticals
- Homeland Security
- Forensics
- Medical diagnostics
- Analytical chemistry

Motivation

However, Raman scattering cross sections are very small ($\sim 10^{-30} \mathrm{~cm}^{2}$)

Trace detection using Raman spectroscopy is insensitive, and not widely used

Motivation

SERS promises to enable the use of Raman spectroscopy in a wide variety of new applications

Motivation

SERS promises to enable the use of Raman spectroscopy in a wide variety of new applications

However, a current dearth of inexpensive, reliable, high performance substrates is limiting the application of SERS

Outline

- Raman scattering
- Surface enhancement
- Femtosecond laser-structured substrates
- Experimental results
- Conclusions

Outline

- Raman scattering
- Surface enhancement
- Femtosecond laser-structured substrates
- Experimental results
- Conclusions

Raman scattering

Raman scattering

Raman scattering

Raman scattering: a classical approach

Raman scattering: a classical
 ω_{0} approach

Raman scattering: a classical
 ω_{0} approach

Raman scattering: a classical
 ω_{0} approach

Raman scattering: a classical
 ω_{0} approach

Outline

- Raman scattering
- Surface enhancement
- Femtosecond laser-structured substrates
- Experimental results
- Conclusions

Surface enhancement

$$
a<0.05 \lambda
$$

Surface enhancement

$$
a<0.05 \lambda
$$

Surface enhancement

1. Near-field scattered electric field enhances polarization of molecules located near surface

$$
\frac{\left|E_{s}\right|}{\left|E_{0}\right|} \propto \frac{\varepsilon_{1}(\omega)-\varepsilon_{2}}{\varepsilon_{1}(\omega)+2 \varepsilon_{2}}
$$

Surface enhancement

1. Near-field scattered electric field enhances polarization of molecules located near surface
2. Field from molecular polarization generates polarization of surface at Raman frequency

Surface enhancement

1. Near-field scattered electric field enhances polarization of molecules located near surface
2. Field from molecular polarization generates polarization of surface at Raman frequency
3. Surface polarization radiates Raman field into far field

Surface enhancement

SERS Enhancement Factor $=\frac{I_{\text {SERS }}}{I_{\text {Normal Raman }}} \propto\left(\frac{\left|E_{s}\left(\omega_{0}\right)\right|}{\left|E_{0}\left(\omega_{0}\right)\right|}\right)^{2} \times\left(\frac{\left|E_{s}\left(\omega_{0}-\omega_{k}\right)\right|}{\left|E_{0}\left(\omega_{0}-\omega_{k}\right)\right|}\right)^{2}$

$$
\approx\left(\frac{\left|E_{s}\left(\omega_{0}\right)\right|}{\left|E_{0}\left(\omega_{0}\right)\right|}\right)^{4}
$$

Outline

- Raman scattering
- Surface enhancement
- Femtosecond laserstructured substrates
- Experimental results
- Conclusions

Femtosecond laser-structured substrates

Femtosecond laser-structured substrates

Femtosecond laser-structured substrates

From: M. Shen, C.H. Crouch, J.E. Carey, and E. Mazur, Appl. Phys. Lett., 85, 5694-5696 (2004)

Femtosecond laser-structured substrates

Outline

- Raman scattering
- Surface enhancement
- Femtosecond laser-structured substrates
- Experimental results
- Conclusions

Experimental procedure

Benzenethiol self-assembled monlayer (SAM)

Enhancement factor calculation

Neat Benzenethiol, baseline corrected

Enhancement factor calculation

20x, 0.25NA Objective

Benzenethiol SAM on fs laser-nanostructured Si

Enhancement factor calculation

SERS Enhancement Factor $=\left(I_{\text {SERS }} / I_{\text {Raman }}\right) \times\left(N_{\text {Raman }} / N_{\text {SERS }}\right)$

EF (1000 cm^{-1} band)
1.9×10^{10}
EF (1572 cm ${ }^{-1}$ band) $\quad 1.5 \times 10^{11}$

SERS substrates: important characteristics

1. Large cross-section enhancement factor
2. Signal is reproducible, uniform across substrates

Signal uniformity

Signal uniformity

Intensity Histogram of Raman Map

Outline

- Raman scattering
- Surface enhancement
- Femtosecond laser-structured substrates
- Experimental results
- Conclusions

Conclusions

Laser nanostructured substrates are easy, cheap to produce

Conclusions

Laser nanostructured substrates are easy, cheap to produce
We have demonstrated SERS from laser nanostructured substrates;

- enhancement factor, signal uniformity of substrates are very competitive in the field

Conclusions

Laser nanostructured substrates are easy, cheap to produce
We have demonstrated SERS from laser nanostructured substrates;

- enhancement factor, signal uniformity of substrates are very competitive in the field

Enhancement mechanism needs to be better understood; future work will focus on understanding operation of substrates

- near field optical profiling, etc.

Thank you!

Mazur Group, NDSEG Fellowship, Horiba Jobin Yvon

http://mazur-www.harvard.edu

Femtosecond laser-structured substrates

Signal uniformity (linear scale)

Motivation

1. Raman scattering/spectroscopy reveals the unique vibrational spectrum of a molecule
2. Molecular Raman scattering cross sections are very small: $\sim 10^{-30} \mathrm{~cm}^{2}$: Raman scattering is difficult to detect for spectroscopy applications (~ 1 in 10^{7} incident photons are Raman scattered from a molecule)
3. Efficient, inexpensive enhancement mechanisms and substrates will enable the use of Raman scattering in a host of new applications

Raman scattering: a classical approach

$$
\begin{gathered}
p^{(1)}=\alpha \cdot E \\
Q_{k}(t)=Q_{k 0} \cos \left(\omega_{k} t+\delta_{k}\right) \\
E(t)=E_{0} \cos \left(\omega_{0} t\right) \\
\alpha \simeq \alpha_{0}+\sum_{k}\left(\frac{\partial \alpha}{\partial Q_{k}}\right)_{0} Q_{k}+\ldots
\end{gathered}
$$

Raman scattering: a classical approach

$$
p^{(1)}(t)=\underbrace{}_{0} E_{0} \cos \left(\omega_{0} t\right)+\frac{1}{2} \sum_{k} \alpha_{k 0}^{\prime} E_{0} Q_{k 0}\left[\cos \left(\left(\omega_{0}-\omega_{k}\right) t-\delta_{k}\right)+\cos \left(\left(\omega_{0}+\omega_{k}\right) t+\delta_{k}\right)\right]
$$

Polarization at the Raman frequencies is LINEAR in E_{0}

Raman scattering: possibility of enhancement?

$$
p^{(1)}=\alpha \cdot E
$$

Enhance $\alpha, \alpha_{k 0}^{\prime}$?

Enhance E ?

Surface enhancement

E_{0}

Surface Enhancement

From: K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, J. Phys.: Condens. Matter 14 (2002) R567-R624

Surface enhancement

Quasi-static approximation (Rayleigh particle limit)

$$
a<0.05 \lambda
$$

Surface enhancement

Quasi-static approximation (Rayleigh particle limit)

$$
a<0.05 \lambda
$$

Near-field enhancement factor

$$
\frac{\left|E_{s}\right|}{\left|E_{0}\right|} \propto \frac{\varepsilon_{1}(\omega)-\varepsilon_{2}}{\varepsilon_{1}(\omega)+2 \varepsilon_{2}}
$$

Surface enhancement

Quasi-static approximation (Rayleigh particle limit)

$$
a<0.05 \lambda
$$

Near-field enhancement factor

$$
\frac{\left|E_{s}\right|}{\left|E_{0}\right|} \propto \frac{\varepsilon_{1}(\omega)-\varepsilon_{2}}{\varepsilon_{1}(\omega)+2 \varepsilon_{2}}
$$

For Ag particle on resonance, $E F \sim 10$

